graphsage_cv.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import gluon
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import gluon
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data

class GraphSAGELayer(gluon.Block):
    def __init__(self,
                 in_feats,
                 hidden,
                 out_feats,
                 dropout,
                 last=False,
                 **kwargs):
        super(GraphSAGELayer, self).__init__(**kwargs)
        self.last = last
        self.dropout = dropout
        with self.name_scope():
            self.dense1 = gluon.nn.Dense(hidden, in_units=in_feats)
            self.layer_norm1 = gluon.nn.LayerNorm(in_channels=hidden)
            self.dense2 = gluon.nn.Dense(out_feats, in_units=hidden)
            if not self.last:
                self.layer_norm2 = gluon.nn.LayerNorm(in_channels=out_feats)

    def forward(self, h):
        h = self.dense1(h)
        h = self.layer_norm1(h)
        h = mx.nd.relu(h)
        if self.dropout:
            h = mx.nd.Dropout(h, p=self.dropout)
        h = self.dense2(h)
        if not self.last:
            h = self.layer_norm2(h)
            h = mx.nd.relu(h)
        return h


class NodeUpdate(gluon.Block):
    def __init__(self, layer_id, in_feats, out_feats, hidden, dropout,
                 test=False, last=False):
        super(NodeUpdate, self).__init__()
        self.layer_id = layer_id
        self.dropout = dropout
        self.test = test
        self.last = last
        with self.name_scope():
            self.layer = GraphSAGELayer(in_feats, hidden, out_feats, dropout, last)

    def forward(self, node):
        h = node.data['h']
        norm = node.data['norm']
        # activation from previous layer of myself
        self_h = node.data['self_h']

        if self.test:
            h = (h - self_h) * norm
            # graphsage
            h = mx.nd.concat(h, self_h)
        else:
            agg_history_str = 'agg_h_{}'.format(self.layer_id-1)
            agg_history = node.data[agg_history_str]
            # normalization constant
            subg_norm = node.data['subg_norm']
            # delta_h (h - history) from previous layer of myself
            self_delta_h = node.data['self_delta_h']
            # control variate
            h = (h - self_delta_h) * subg_norm + agg_history * norm
            # graphsage
            h = mx.nd.concat(h, self_h)
            if self.dropout:
                h = mx.nd.Dropout(h, p=self.dropout)

        h = self.layer(h)

        return {'activation': h}



class GraphSAGETrain(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 dropout,
                 **kwargs):
        super(GraphSAGETrain, self).__init__(**kwargs)
        self.dropout = dropout
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.input_layer = GraphSAGELayer(2*in_feats, n_hidden, n_hidden, dropout)
            # hidden layers
            for i in range(1, n_layers):
                self.layers.add(NodeUpdate(i, 2*n_hidden, n_hidden, n_hidden, dropout))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, n_hidden, dropout, last=True))

    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        features = nf.layers[0].data['features']
        h = mx.nd.concat(h, features)
        if self.dropout:
            h = mx.nd.Dropout(h, p=self.dropout)

        h = self.input_layer(h)

        for i, layer in enumerate(self.layers):
            parent_nid = dgl.utils.toindex(nf.layer_parent_nid(i+1))
117
            layer_nid = nf.map_from_parent_nid(i, parent_nid).as_in_context(h.context)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            self_h = h[layer_nid]
            # activation from previous layer of myself, used in graphSAGE
            nf.layers[i+1].data['self_h'] = self_h

            new_history = h.copy().detach()
            history_str = 'h_{}'.format(i)
            history = nf.layers[i].data[history_str]
            # delta_h used in control variate
            delta_h = h - history
            # delta_h from previous layer of the nodes in (i+1)-th layer, used in control variate
            nf.layers[i+1].data['self_delta_h'] = delta_h[layer_nid]

            nf.layers[i].data['h'] = delta_h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)
            h = nf.layers[i+1].data.pop('activation')
            # update history
            if i < nf.num_layers-1:
                nf.layers[i].data[history_str] = new_history

        return h


class GraphSAGEInfer(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 **kwargs):
        super(GraphSAGEInfer, self).__init__(**kwargs)
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.input_layer = GraphSAGELayer(2*in_feats, n_hidden, n_hidden, 0)
            # hidden layers
            for i in range(1, n_layers):
                self.layers.add(NodeUpdate(i, 2*n_hidden, n_hidden, n_hidden, 0, True))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, n_hidden, 0, True, last=True))


    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        features = nf.layers[0].data['features']
        h = mx.nd.concat(h, features)
        h = self.input_layer(h)

        for i, layer in enumerate(self.layers):
            nf.layers[i].data['h'] = h
            parent_nid = dgl.utils.toindex(nf.layer_parent_nid(i+1))
171
            layer_nid = nf.map_from_parent_nid(i, parent_nid).as_in_context(h.context)
172
173
174
175
176
177
178
179
180
181
182
183
            # activation from previous layer of the nodes in (i+1)-th layer, used in graphSAGE
            self_h = h[layer_nid]
            nf.layers[i+1].data['self_h'] = self_h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)
            h = nf.layers[i+1].data.pop('activation')

        return h


184
185
186
187
def graphsage_cv_train(g, ctx, args, n_classes, train_nid, test_nid, n_test_samples):
    features = g.ndata['features']
    labels = g.ndata['labels']
    in_feats = g.ndata['features'].shape[1]
188
189
190
191
192

    norm = mx.nd.expand_dims(1./g.in_degrees().astype('float32'), 1)
    g.ndata['norm'] = norm.as_in_context(ctx)

    degs = g.in_degrees().astype('float32').asnumpy()
193
    degs[degs > args.num_neighbors] = args.num_neighbors
194
195
196
197
198
199
    g.ndata['subg_norm'] = mx.nd.expand_dims(mx.nd.array(1./degs, ctx=ctx), 1)

    g.update_all(fn.copy_src(src='features', out='m'),
                 fn.sum(msg='m', out='preprocess'),
                 lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']})

200
    n_layers = args.n_layers
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    for i in range(n_layers):
        g.ndata['h_{}'.format(i)] = mx.nd.zeros((features.shape[0], args.n_hidden), ctx=ctx)

    model = GraphSAGETrain(in_feats,
                           args.n_hidden,
                           n_classes,
                           n_layers,
                           args.dropout,
                           prefix='GraphSAGE')

    model.initialize(ctx=ctx)

    loss_fcn = gluon.loss.SoftmaxCELoss()

    infer_model = GraphSAGEInfer(in_feats,
                                 args.n_hidden,
                                 n_classes,
                                 n_layers,
                                 prefix='GraphSAGE')

    infer_model.initialize(ctx=ctx)

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
                            {'learning_rate': args.lr, 'wd': args.weight_decay},
                            kvstore=mx.kv.create('local'))

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
232
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.batch_size,
233
                                                       args.num_neighbors,
234
235
                                                       neighbor_type='in',
                                                       shuffle=True,
236
                                                       num_workers=32,
237
238
239
                                                       num_hops=n_layers,
                                                       add_self_loop=True,
                                                       seed_nodes=train_nid):
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            for i in range(n_layers):
                agg_history_str = 'agg_h_{}'.format(i)
                g.pull(nf.layer_parent_nid(i+1), fn.copy_src(src='h_{}'.format(i), out='m'),
                       fn.sum(msg='m', out=agg_history_str))

            node_embed_names = [['preprocess', 'features', 'h_0']]
            for i in range(1, n_layers):
                node_embed_names.append(['h_{}'.format(i), 'agg_h_{}'.format(i-1), 'subg_norm', 'norm'])
            node_embed_names.append(['agg_h_{}'.format(n_layers-1), 'subg_norm', 'norm'])

            nf.copy_from_parent(node_embed_names=node_embed_names)
            # forward
            with mx.autograd.record():
                pred = model(nf)
                batch_nids = nf.layer_parent_nid(-1).as_in_context(ctx)
                batch_labels = labels[batch_nids]
                loss = loss_fcn(pred, batch_labels)
                loss = loss.sum() / len(batch_nids)

            loss.backward()
            trainer.step(batch_size=1)

            node_embed_names = [['h_{}'.format(i)] for i in range(n_layers)]
            node_embed_names.append([])

            nf.copy_to_parent(node_embed_names=node_embed_names)

        infer_params = infer_model.collect_params()

        for key in infer_params:
            idx = trainer._param2idx[key]
            trainer._kvstore.pull(idx, out=infer_params[key].data())

        num_acc = 0.
274
        num_tests = 0
275

276
277
278
279
280
281
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                       g.number_of_nodes(),
                                                       neighbor_type='in',
                                                       num_hops=n_layers,
                                                       seed_nodes=test_nid,
                                                       add_self_loop=True):
282
283
284
285
286
287
288
289
290
            node_embed_names = [['preprocess', 'features']]
            for i in range(n_layers):
                node_embed_names.append(['norm', 'subg_norm'])
            nf.copy_from_parent(node_embed_names=node_embed_names)

            pred = infer_model(nf)
            batch_nids = nf.layer_parent_nid(-1).as_in_context(ctx)
            batch_labels = labels[batch_nids]
            num_acc += (pred.argmax(axis=1) == batch_labels).sum().asscalar()
291
292
            num_tests += nf.layer_size(-1)
            break
293

294
        print("Test Accuracy {:.4f}". format(num_acc/num_tests))