test_subgraph_sampler.py 17.3 KB
Newer Older
1
import dgl
2
import dgl.graphbolt as gb
3
4
5
import gb_test_utils
import pytest
import torch
6
from torchdata.datapipes.iter import Mapper
7
8


9
10
def test_SubgraphSampler_invoke():
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
11
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
12
13

    # Invoke via class constructor.
14
    datapipe = gb.SubgraphSampler(item_sampler)
15
16
17
18
    with pytest.raises(NotImplementedError):
        next(iter(datapipe))

    # Invokde via functional form.
19
    datapipe = item_sampler.sample_subgraph()
20
21
22
23
24
25
    with pytest.raises(NotImplementedError):
        next(iter(datapipe))


@pytest.mark.parametrize("labor", [False, True])
def test_NeighborSampler_invoke(labor):
26
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
27
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
28
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
29
30
31
32
33
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    # Invoke via class constructor.
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
34
    datapipe = Sampler(item_sampler, graph, fanouts)
35
36
37
38
    assert len(list(datapipe)) == 5

    # Invokde via functional form.
    if labor:
39
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
40
    else:
41
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
42
43
44
    assert len(list(datapipe)) == 5


45
46
@pytest.mark.parametrize("labor", [False, True])
def test_NeighborSampler_fanouts(labor):
47
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2

    # `fanouts` is a list of tensors.
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    if labor:
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
    else:
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
    assert len(list(datapipe)) == 5

    # `fanouts` is a list of integers.
    fanouts = [2 for _ in range(num_layer)]
    if labor:
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
    else:
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
    assert len(list(datapipe)) == 5


69
70
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Node(labor):
71
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
72
73
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
74
75
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
76
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
77
    sampler_dp = Sampler(item_sampler, graph, fanouts)
78
    assert len(list(sampler_dp)) == 5
79
80


81
def to_link_batch(data):
82
    block = gb.MiniBatch(node_pairs=data)
83
    return block
84
85


86
87
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Link(labor):
88
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
89
90
    itemset = gb.ItemSet(torch.arange(0, 20).reshape(-1, 2), names="node_pairs")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
91
92
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
93
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
94
    neighbor_dp = Sampler(item_sampler, graph, fanouts)
95
    assert len(list(neighbor_dp)) == 5
96
97


98
@pytest.mark.parametrize("labor", [False, True])
99
def test_SubgraphSampler_Link_With_Negative(labor):
100
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
101
102
    itemset = gb.ItemSet(torch.arange(0, 20).reshape(-1, 2), names="node_pairs")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
103
104
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
105
    negative_dp = gb.UniformNegativeSampler(item_sampler, graph, 1)
106
107
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    neighbor_dp = Sampler(negative_dp, graph, fanouts)
108
    assert len(list(neighbor_dp)) == 5
109
110


111
112
113
114
115
116
117
def get_hetero_graph():
    # COO graph:
    # [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
    # [2, 4, 2, 3, 0, 1, 1, 0, 0, 1]
    # [1, 1, 1, 1, 0, 0, 0, 0, 0] - > edge type.
    # num_nodes = 5, num_n1 = 2, num_n2 = 3
    ntypes = {"n1": 0, "n2": 1}
118
    etypes = {"n1:e1:n2": 0, "n2:e2:n1": 1}
119
120
121
122
123
    metadata = gb.GraphMetadata(ntypes, etypes)
    indptr = torch.LongTensor([0, 2, 4, 6, 8, 10])
    indices = torch.LongTensor([2, 4, 2, 3, 0, 1, 1, 0, 0, 1])
    type_per_edge = torch.LongTensor([1, 1, 1, 1, 0, 0, 0, 0, 0, 0])
    node_type_offset = torch.LongTensor([0, 2, 5])
124
    return gb.from_fused_csc(
125
126
127
128
129
130
        indptr,
        indices,
        node_type_offset=node_type_offset,
        type_per_edge=type_per_edge,
        metadata=metadata,
    )
131
132


133
134
135
136
137
138
139
140
141
142
143
144
145
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Node_Hetero(labor):
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {"n2": gb.ItemSet(torch.arange(3), names="seed_nodes")}
    )
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    sampler_dp = Sampler(item_sampler, graph, fanouts)
    assert len(list(sampler_dp)) == 2
    for minibatch in sampler_dp:
peizhou001's avatar
peizhou001 committed
146
        assert len(minibatch.sampled_subgraphs) == num_layer
147
148


149
150
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Link_Hetero(labor):
151
152
153
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {
154
            "n1:e1:n2": gb.ItemSet(
155
156
                torch.LongTensor([[0, 0, 1, 1], [0, 2, 0, 1]]).T,
                names="node_pairs",
157
            ),
158
            "n2:e2:n1": gb.ItemSet(
159
160
                torch.LongTensor([[0, 0, 1, 1, 2, 2], [0, 1, 1, 0, 0, 1]]).T,
                names="node_pairs",
161
162
163
            ),
        }
    )
164

165
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
166
167
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
168
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
169
    neighbor_dp = Sampler(item_sampler, graph, fanouts)
170
    assert len(list(neighbor_dp)) == 5
171
172


173
@pytest.mark.parametrize("labor", [False, True])
174
def test_SubgraphSampler_Link_Hetero_With_Negative(labor):
175
176
177
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {
178
            "n1:e1:n2": gb.ItemSet(
179
180
                torch.LongTensor([[0, 0, 1, 1], [0, 2, 0, 1]]).T,
                names="node_pairs",
181
            ),
182
            "n2:e2:n1": gb.ItemSet(
183
184
                torch.LongTensor([[0, 0, 1, 1, 2, 2], [0, 1, 1, 0, 0, 1]]).T,
                names="node_pairs",
185
186
187
188
            ),
        }
    )

189
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
190
191
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
192
    negative_dp = gb.UniformNegativeSampler(item_sampler, graph, 1)
193
194
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    neighbor_dp = Sampler(negative_dp, graph, fanouts)
195
    assert len(list(neighbor_dp)) == 5
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Random_Hetero_Graph(labor):
    num_nodes = 5
    num_edges = 9
    num_ntypes = 3
    num_etypes = 3
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        metadata,
    ) = gb_test_utils.random_hetero_graph(
        num_nodes, num_edges, num_ntypes, num_etypes
    )
    edge_attributes = {
        "A1": torch.randn(num_edges),
        "A2": torch.randn(num_edges),
    }
217
    graph = gb.from_fused_csc(
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        edge_attributes,
        metadata,
    )
    itemset = gb.ItemSetDict(
        {
            "n2": gb.ItemSet(torch.tensor([0]), names="seed_nodes"),
            "n1": gb.ItemSet(torch.tensor([1]), names="seed_nodes"),
        }
    )

    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    sampler_dp = Sampler(item_sampler, graph, fanouts, replace=True)

    for data in sampler_dp:
        for sampledsubgraph in data.sampled_subgraphs:
            for _, value in sampledsubgraph.node_pairs.items():
                assert torch.equal(
                    torch.ge(value[0], torch.zeros(len(value[0]))),
                    torch.ones(len(value[0])),
                )
                assert torch.equal(
                    torch.ge(value[1], torch.zeros(len(value[1]))),
                    torch.ones(len(value[1])),
                )
            for _, value in sampledsubgraph.original_column_node_ids.items():
                assert torch.equal(
                    torch.ge(value, torch.zeros(len(value))),
                    torch.ones(len(value)),
                )
            for _, value in sampledsubgraph.original_row_node_ids.items():
                assert torch.equal(
                    torch.ge(value, torch.zeros(len(value))),
                    torch.ones(len(value)),
                )
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_without_dedpulication_Homo(labor):
    graph = dgl.graph(
        ([5, 0, 1, 5, 6, 7, 2, 2, 4], [0, 1, 2, 2, 2, 2, 3, 4, 4])
    )
    graph = gb.from_dglgraph(graph, True)
    seed_nodes = torch.LongTensor([0, 3, 4])

    itemset = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=len(seed_nodes))
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(item_sampler, graph, fanouts, deduplicate=False)

    length = [17, 7]
    compacted_indices = [
        torch.arange(0, 10) + 7,
        torch.arange(0, 4) + 3,
    ]
    indptr = [
        torch.tensor([0, 1, 2, 4, 4, 6, 8, 10]),
        torch.tensor([0, 1, 2, 4]),
    ]
    seeds = [torch.tensor([0, 3, 4, 5, 2, 2, 4]), torch.tensor([0, 3, 4])]
    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            assert len(sampled_subgraph.original_row_node_ids) == length[step]
            assert torch.equal(
                sampled_subgraph.node_pairs.indices, compacted_indices[step]
            )
            assert torch.equal(sampled_subgraph.node_pairs.indptr, indptr[step])
            assert torch.equal(
                sampled_subgraph.original_column_node_ids, seeds[step]
            )


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_without_dedpulication_Hetero(labor):
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {"n2": gb.ItemSet(torch.arange(2), names="seed_nodes")}
    )
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(item_sampler, graph, fanouts, deduplicate=False)
    csc_formats = [
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([4, 5, 6, 7]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4, 6, 8]),
                indices=torch.tensor([2, 3, 4, 5, 6, 7, 8, 9]),
            ),
        },
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 1, 2, 3]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0]),
                indices=torch.tensor([], dtype=torch.int64),
            ),
        },
    ]
    original_column_node_ids = [
        {
            "n1": torch.tensor([0, 1, 1, 0]),
            "n2": torch.tensor([0, 1]),
        },
        {
            "n1": torch.tensor([], dtype=torch.int64),
            "n2": torch.tensor([0, 1]),
        },
    ]
    original_row_node_ids = [
        {
            "n1": torch.tensor([0, 1, 1, 0, 0, 1, 1, 0]),
            "n2": torch.tensor([0, 1, 0, 2, 0, 1, 0, 1, 0, 2]),
        },
        {
            "n1": torch.tensor([0, 1, 1, 0]),
            "n2": torch.tensor([0, 1]),
        },
    ]

    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            for ntype in ["n1", "n2"]:
                assert torch.equal(
                    sampled_subgraph.original_row_node_ids[ntype],
                    original_row_node_ids[step][ntype],
                )
                assert torch.equal(
                    sampled_subgraph.original_column_node_ids[ntype],
                    original_column_node_ids[step][ntype],
                )
            for etype in ["n1:e1:n2", "n2:e2:n1"]:
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indices,
                    csc_formats[step][etype].indices,
                )
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indptr,
                    csc_formats[step][etype].indptr,
                )
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_unique_csc_format_Homo(labor):
    torch.manual_seed(1205)
    graph = dgl.graph(([5, 0, 6, 7, 2, 2, 4], [0, 1, 2, 2, 3, 4, 4]))
    graph = gb.from_dglgraph(graph, True)
    seed_nodes = torch.LongTensor([0, 3, 4])

    itemset = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=len(seed_nodes))
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(
        item_sampler,
        graph,
        fanouts,
        replace=False,
        deduplicate=True,
        output_cscformat=True,
    )

    original_row_node_ids = [
        torch.tensor([0, 3, 4, 5, 2, 6, 7]),
        torch.tensor([0, 3, 4, 5, 2]),
    ]
    compacted_indices = [
        torch.tensor([3, 4, 4, 2, 5, 6]),
        torch.tensor([3, 4, 4, 2]),
    ]
    indptr = [
        torch.tensor([0, 1, 2, 4, 4, 6]),
        torch.tensor([0, 1, 2, 4]),
    ]
    seeds = [torch.tensor([0, 3, 4, 5, 2]), torch.tensor([0, 3, 4])]
    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            assert torch.equal(
                sampled_subgraph.original_row_node_ids,
                original_row_node_ids[step],
            )
            assert torch.equal(
                sampled_subgraph.node_pairs.indices, compacted_indices[step]
            )
            assert torch.equal(sampled_subgraph.node_pairs.indptr, indptr[step])
            assert torch.equal(
                sampled_subgraph.original_column_node_ids, seeds[step]
            )


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_unique_csc_format_Hetero(labor):
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {"n2": gb.ItemSet(torch.arange(2), names="seed_nodes")}
    )
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(
        item_sampler,
        graph,
        fanouts,
        deduplicate=True,
        output_cscformat=True,
    )
    csc_formats = [
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 1, 1, 0]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 2, 0, 1]),
            ),
        },
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 1, 1, 0]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0]),
                indices=torch.tensor([], dtype=torch.int64),
            ),
        },
    ]
    original_column_node_ids = [
        {
            "n1": torch.tensor([0, 1]),
            "n2": torch.tensor([0, 1]),
        },
        {
            "n1": torch.tensor([], dtype=torch.int64),
            "n2": torch.tensor([0, 1]),
        },
    ]
    original_row_node_ids = [
        {
            "n1": torch.tensor([0, 1]),
            "n2": torch.tensor([0, 1, 2]),
        },
        {
            "n1": torch.tensor([0, 1]),
            "n2": torch.tensor([0, 1]),
        },
    ]

    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            for ntype in ["n1", "n2"]:
                assert torch.equal(
                    sampled_subgraph.original_row_node_ids[ntype],
                    original_row_node_ids[step][ntype],
                )
                assert torch.equal(
                    sampled_subgraph.original_column_node_ids[ntype],
                    original_column_node_ids[step][ntype],
                )
            for etype in ["n1:e1:n2", "n2:e2:n1"]:
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indices,
                    csc_formats[step][etype].indices,
                )
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indptr,
                    csc_formats[step][etype].indptr,
                )