test_graphbolt_utils.py 11.1 KB
Newer Older
1
import dgl.graphbolt as gb
2
import pytest
3
4
5
import torch


6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def test_find_reverse_edges_homo():
    edges = (torch.tensor([1, 3, 5]), torch.tensor([2, 4, 5]))
    edges = gb.add_reverse_edges(edges)
    expected_edges = (
        torch.tensor([1, 3, 5, 2, 4, 5]),
        torch.tensor([2, 4, 5, 1, 3, 5]),
    )
    assert torch.equal(edges[0], expected_edges[0])
    assert torch.equal(edges[1], expected_edges[1])


def test_find_reverse_edges_hetero():
    edges = {
        "A:r:B": (torch.tensor([1, 5]), torch.tensor([2, 5])),
        "B:rr:A": (torch.tensor([3]), torch.tensor([3])),
    }
    edges = gb.add_reverse_edges(edges, {"A:r:B": "B:rr:A"})
    expected_edges = {
        "A:r:B": (torch.tensor([1, 5]), torch.tensor([2, 5])),
        "B:rr:A": (torch.tensor([3, 2, 5]), torch.tensor([3, 1, 5])),
    }
    assert torch.equal(edges["A:r:B"][0], expected_edges["A:r:B"][0])
    assert torch.equal(edges["A:r:B"][1], expected_edges["A:r:B"][1])
    assert torch.equal(edges["B:rr:A"][0], expected_edges["B:rr:A"][0])
    assert torch.equal(edges["B:rr:A"][1], expected_edges["B:rr:A"][1])


def test_find_reverse_edges_bi_reverse_types():
    edges = {
        "A:r:B": (torch.tensor([1, 5]), torch.tensor([2, 5])),
        "B:rr:A": (torch.tensor([3]), torch.tensor([3])),
    }
    edges = gb.add_reverse_edges(edges, {"A:r:B": "B:rr:A", "B:rr:A": "A:r:B"})
    expected_edges = {
        "A:r:B": (torch.tensor([1, 5, 3]), torch.tensor([2, 5, 3])),
        "B:rr:A": (torch.tensor([3, 2, 5]), torch.tensor([3, 1, 5])),
    }
    assert torch.equal(edges["A:r:B"][0], expected_edges["A:r:B"][0])
    assert torch.equal(edges["A:r:B"][1], expected_edges["A:r:B"][1])
    assert torch.equal(edges["B:rr:A"][0], expected_edges["B:rr:A"][0])
    assert torch.equal(edges["B:rr:A"][1], expected_edges["B:rr:A"][1])


def test_find_reverse_edges_circual_reverse_types():
    edges = {
        "A:r1:B": (torch.tensor([1]), torch.tensor([1])),
        "B:r2:C": (torch.tensor([2]), torch.tensor([2])),
        "C:r3:A": (torch.tensor([3]), torch.tensor([3])),
    }
    edges = gb.add_reverse_edges(
        edges, {"A:r1:B": "B:r2:C", "B:r2:C": "C:r3:A", "C:r3:A": "A:r1:B"}
    )
    expected_edges = {
        "A:r1:B": (torch.tensor([1, 3]), torch.tensor([1, 3])),
        "B:r2:C": (torch.tensor([2, 1]), torch.tensor([2, 1])),
        "C:r3:A": (torch.tensor([3, 2]), torch.tensor([3, 2])),
    }
    assert torch.equal(edges["A:r1:B"][0], expected_edges["A:r1:B"][0])
    assert torch.equal(edges["A:r1:B"][1], expected_edges["A:r1:B"][1])
    assert torch.equal(edges["B:r2:C"][0], expected_edges["B:r2:C"][0])
    assert torch.equal(edges["B:r2:C"][1], expected_edges["B:r2:C"][1])
    assert torch.equal(edges["A:r1:B"][0], expected_edges["A:r1:B"][0])
    assert torch.equal(edges["A:r1:B"][1], expected_edges["A:r1:B"][1])
    assert torch.equal(edges["C:r3:A"][0], expected_edges["C:r3:A"][0])
    assert torch.equal(edges["C:r3:A"][1], expected_edges["C:r3:A"][1])


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def test_unique_and_compact_hetero():
    N1 = torch.randint(0, 50, (30,))
    N2 = torch.randint(0, 50, (20,))
    N3 = torch.randint(0, 50, (10,))
    unique_N1 = torch.unique(N1)
    unique_N2 = torch.unique(N2)
    unique_N3 = torch.unique(N3)
    expected_unique = {
        "n1": unique_N1,
        "n2": unique_N2,
        "n3": unique_N3,
    }
    nodes_dict = {
        "n1": N1.split(5),
        "n2": N2.split(4),
        "n3": N3.split(2),
    }

    unique, compacted = gb.unique_and_compact(nodes_dict)
    for ntype, nodes in unique.items():
        expected_nodes = expected_unique[ntype]
        assert torch.equal(torch.sort(nodes)[0], expected_nodes)

    for ntype, nodes in compacted.items():
        expected_nodes = nodes_dict[ntype]
98
        assert isinstance(nodes, list)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        for expected_node, node in zip(expected_nodes, nodes):
            node = unique[ntype][node]
            assert torch.equal(expected_node, node)


def test_unique_and_compact_homo():
    N = torch.randint(0, 50, (200,))
    expected_unique_N = torch.unique(N)
    nodes_list = N.split(5)

    unique, compacted = gb.unique_and_compact(nodes_list)

    assert torch.equal(torch.sort(unique)[0], expected_unique_N)

113
    assert isinstance(compacted, list)
114
115
116
117
118
    for expected_node, node in zip(nodes_list, compacted):
        node = unique[node]
        assert torch.equal(expected_node, node)


119
120
121
122
def test_unique_and_compact_node_pairs_hetero():
    N1 = torch.randint(0, 50, (30,))
    N2 = torch.randint(0, 50, (20,))
    N3 = torch.randint(0, 50, (10,))
123
124
125
    unique_N1 = torch.unique(N1)
    unique_N2 = torch.unique(N2)
    unique_N3 = torch.unique(N3)
126
127
128
129
130
131
    expected_unique_nodes = {
        "n1": unique_N1,
        "n2": unique_N2,
        "n3": unique_N3,
    }
    node_pairs = {
132
        "n1:e1:n2": (
133
134
135
            N1[:20],
            N2,
        ),
136
        "n1:e2:n3": (
137
138
139
            N1[20:30],
            N3,
        ),
140
        "n2:e3:n3": (
141
142
143
144
145
146
147
148
            N2[10:],
            N3,
        ),
    }

    unique_nodes, compacted_node_pairs = gb.unique_and_compact_node_pairs(
        node_pairs
    )
149
150
151
    for ntype, nodes in unique_nodes.items():
        expected_nodes = expected_unique_nodes[ntype]
        assert torch.equal(torch.sort(nodes)[0], expected_nodes)
152
153
    for etype, pair in compacted_node_pairs.items():
        u, v = pair
154
        u_type, _, v_type = gb.etype_str_to_tuple(etype)
155
156
        u, v = unique_nodes[u_type][u], unique_nodes[v_type][v]
        expected_u, expected_v = node_pairs[etype]
157
158
159
160
161
        assert torch.equal(u, expected_u)
        assert torch.equal(v, expected_v)


def test_unique_and_compact_node_pairs_homo():
162
163
    N = torch.randint(0, 50, (200,))
    expected_unique_N = torch.unique(N)
164

165
    node_pairs = tuple(N.split(100))
166
167
168
    unique_nodes, compacted_node_pairs = gb.unique_and_compact_node_pairs(
        node_pairs
    )
169
170
    assert torch.equal(torch.sort(unique_nodes)[0], expected_unique_N)

171
    u, v = compacted_node_pairs
172
173
174
    u, v = unique_nodes[u], unique_nodes[v]
    expected_u, expected_v = node_pairs
    unique_v = torch.unique(expected_v)
175
176
    assert torch.equal(u, expected_u)
    assert torch.equal(v, expected_v)
177
178
179
180
181
182
183
184
    assert torch.equal(unique_nodes[: unique_v.size(0)], unique_v)


def test_incomplete_unique_dst_nodes_():
    node_pairs = (torch.randint(0, 50, (50,)), torch.randint(100, 150, (50,)))
    unique_dst_nodes = torch.arange(150, 200)
    with pytest.raises(IndexError):
        gb.unique_and_compact_node_pairs(node_pairs, unique_dst_nodes)
185
186


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def test_unique_and_compact_csc_formats_hetero():
    dst_nodes = {
        "n2": torch.tensor([2, 4, 1, 3]),
        "n3": torch.tensor([1, 3, 2, 7]),
    }
    csc_formats = {
        "n1:e1:n2": gb.CSCFormatBase(
            indptr=torch.tensor([0, 3, 4, 7, 10]),
            indices=torch.tensor([1, 3, 4, 6, 2, 7, 9, 4, 2, 6]),
        ),
        "n1:e2:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 4, 7, 10]),
            indices=torch.tensor([5, 2, 6, 4, 7, 2, 8, 1, 3, 0]),
        ),
        "n2:e3:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 4, 6, 8]),
            indices=torch.tensor([2, 5, 4, 1, 4, 3, 6, 0]),
        ),
    }

    expected_unique_nodes = {
        "n1": torch.tensor([1, 3, 4, 6, 2, 7, 9, 5, 8, 0]),
        "n2": torch.tensor([2, 4, 1, 3, 5, 6, 0]),
        "n3": torch.tensor([1, 3, 2, 7]),
    }
    expected_csc_formats = {
        "n1:e1:n2": gb.CSCFormatBase(
            indptr=torch.tensor([0, 3, 4, 7, 10]),
            indices=torch.tensor([0, 1, 2, 3, 4, 5, 6, 2, 4, 3]),
        ),
        "n1:e2:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 4, 7, 10]),
            indices=torch.tensor([7, 4, 3, 2, 5, 4, 8, 0, 1, 9]),
        ),
        "n2:e3:n3": gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 4, 6, 8]),
            indices=torch.tensor([0, 4, 1, 2, 1, 3, 5, 6]),
        ),
    }

    unique_nodes, compacted_csc_formats = gb.unique_and_compact_csc_formats(
        csc_formats, dst_nodes
    )

    for ntype, nodes in unique_nodes.items():
        expected_nodes = expected_unique_nodes[ntype]
        assert torch.equal(nodes, expected_nodes)
    for etype, pair in compacted_csc_formats.items():
        indices = pair.indices
        indptr = pair.indptr
        expected_indices = expected_csc_formats[etype].indices
        expected_indptr = expected_csc_formats[etype].indptr
        assert torch.equal(indices, expected_indices)
        assert torch.equal(indptr, expected_indptr)


def test_unique_and_compact_csc_formats_homo():
    seeds = torch.tensor([1, 3, 5, 2, 6])
    indptr = torch.tensor([0, 2, 4, 6, 7, 10, 11])
    indices = torch.tensor([2, 3, 1, 4, 5, 2, 5, 1, 4, 4, 6])
    csc_formats = gb.CSCFormatBase(indptr=indptr, indices=indices)

    expected_unique_nodes = torch.tensor([1, 3, 5, 2, 6, 4])
    expected_indptr = indptr
    expected_indices = torch.tensor([3, 1, 0, 5, 2, 3, 2, 0, 5, 5, 4])

    unique_nodes, compacted_csc_formats = gb.unique_and_compact_csc_formats(
        csc_formats, seeds
    )

    indptr = compacted_csc_formats.indptr
    indices = compacted_csc_formats.indices
    assert torch.equal(indptr, expected_indptr)
    assert torch.equal(indices, expected_indices)
    assert torch.equal(unique_nodes, expected_unique_nodes)


264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def test_compact_csc_format_hetero():
    N1 = torch.randint(0, 50, (30,))
    N2 = torch.randint(0, 50, (20,))
    N3 = torch.randint(0, 50, (10,))

    expected_original_row_ids = {
        "n1": N1,
        "n2": N2,
        "n3": N3,
    }
    csc_formats = {
        "n1:e1:n2": gb.CSCFormatBase(
            indptr=torch.arange(0, 22, 2),
            indices=N1[:20],
        ),
        "n1:e2:n3": gb.CSCFormatBase(
            indptr=torch.arange(0, 11),
            indices=N1[20:30],
        ),
        "n2:e3:n3": gb.CSCFormatBase(
            indptr=torch.arange(0, 11),
            indices=N2[10:],
        ),
    }
    dst_nodes = {"n2": N2[:10], "n3": N3}
    original_row_ids, compacted_csc_formats = gb.compact_csc_format(
        csc_formats, dst_nodes
    )

    for ntype, nodes in original_row_ids.items():
        expected_nodes = expected_original_row_ids[ntype]
        assert torch.equal(nodes, expected_nodes)
    for etype, csc_format in compacted_csc_formats.items():
        indptr = csc_format.indptr
        indices = csc_format.indices
        src_type, _, _ = gb.etype_str_to_tuple(etype)
        indices = original_row_ids[src_type][indices]
        expected_indptr = csc_formats[etype].indptr
        expected_indices = csc_formats[etype].indices
        assert torch.equal(indptr, expected_indptr)
        assert torch.equal(indices, expected_indices)


def test_compact_csc_format_homo():
    N = torch.randint(0, 50, (200,))
    expected_original_row_ids = N

    csc_formats = gb.CSCFormatBase(
        indptr=torch.arange(0, 191, 19), indices=N[10:]
    )
    dst_nodes = N[:10]
    original_row_ids, compacted_csc_formats = gb.compact_csc_format(
        csc_formats, dst_nodes
    )

    indptr = compacted_csc_formats.indptr
    indices = N[compacted_csc_formats.indices]
    expected_indptr = csc_formats.indptr
    expected_indices = csc_formats.indices
    assert torch.equal(indptr, expected_indptr)
    assert torch.equal(indices, expected_indices)
    assert torch.equal(original_row_ids, expected_original_row_ids)