data_loader.py 9.27 KB
Newer Older
KounianhuaDu's avatar
KounianhuaDu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import dgl
from collections import defaultdict as ddict
from ordered_set import OrderedSet

class TrainDataset(Dataset):
    """
    Training Dataset class.
    Parameters
    ----------
    triples: The triples used for training the model
    num_ent: Number of entities in the knowledge graph
    lbl_smooth: Label smoothing

    Returns
    -------
    A training Dataset class instance used by DataLoader
    """
    def __init__(self, triples, num_ent, lbl_smooth):
        self.triples = triples
        self.num_ent = num_ent
        self.lbl_smooth = lbl_smooth
        self.entities = np.arange(self.num_ent, dtype=np.int32)

    def __len__(self):
        return len(self.triples)

    def __getitem__(self, idx):
        ele = self.triples[idx]
        triple, label = torch.LongTensor(ele['triple']), np.int32(ele['label'])
        trp_label = self.get_label(label)
        #label smoothing
        if self.lbl_smooth != 0.0:
            trp_label = (1.0 - self.lbl_smooth) * trp_label + (1.0 / self.num_ent)

        return triple, trp_label

    @staticmethod
    def collate_fn(data):
        triples = []
        labels = []
        for triple, label in data:
            triples.append(triple)
            labels.append(label)
        triple = torch.stack(triples, dim=0)
        trp_label = torch.stack(labels, dim=0)
        return triple, trp_label

    #for edges that exist in the graph, the entry is 1.0, otherwise the entry is 0.0
    def get_label(self, label):
        y = np.zeros([self.num_ent], dtype=np.float32)
        for e2 in label: 
            y[e2] = 1.0
        return torch.FloatTensor(y)


class TestDataset(Dataset):
    """
    Evaluation Dataset class.
    Parameters
    ----------
    triples: The triples used for evaluating the model
    num_ent: Number of entities in the knowledge graph

    Returns
    -------
    An evaluation Dataset class instance used by DataLoader for model evaluation
    """
    def __init__(self, triples, num_ent):
        self.triples = triples
        self.num_ent = num_ent

    def __len__(self):
        return len(self.triples)

    def __getitem__(self, idx):
        ele = self.triples[idx]
        triple, label = torch.LongTensor(ele['triple']), np.int32(ele['label'])
        label = self.get_label(label)

        return triple, label

    @staticmethod
    def collate_fn(data):
        triples = []
        labels = []
        for triple, label in data:
            triples.append(triple)
            labels.append(label)
        triple = torch.stack(triples, dim=0)
        label = torch.stack(labels, dim=0)
        return triple, label

    #for edges that exist in the graph, the entry is 1.0, otherwise the entry is 0.0
    def get_label(self, label):
        y = np.zeros([self.num_ent], dtype=np.float32)
        for e2 in label: 
            y[e2] = 1.0
        return torch.FloatTensor(y)


class Data(object):

    def __init__(self, dataset, lbl_smooth, num_workers, batch_size):
        """
        Reading in raw triples and converts it into a standard format. 
        Parameters
        ----------
        dataset:           The name of the dataset
        lbl_smooth:        Label smoothing
        num_workers:       Number of workers of dataloaders
        batch_size:        Batch size of dataloaders

        Returns
        -------
        self.ent2id:            Entity to unique identifier mapping
        self.rel2id:            Relation to unique identifier mapping
        self.id2ent:            Inverse mapping of self.ent2id
        self.id2rel:            Inverse mapping of self.rel2id
        self.num_ent:           Number of entities in the knowledge graph
        self.num_rel:           Number of relations in the knowledge graph

        self.g:                 The dgl graph constucted from the edges in the traing set and all the entities in the knowledge graph
        self.data['train']:     Stores the triples corresponding to training dataset
        self.data['valid']:     Stores the triples corresponding to validation dataset
        self.data['test']:      Stores the triples corresponding to test dataset
        self.data_iter:		The dataloader for different data splits
        """
        self.dataset = dataset
        self.lbl_smooth = lbl_smooth
        self.num_workers = num_workers
        self.batch_size = batch_size

        #read in raw data and get mappings
        ent_set, rel_set = OrderedSet(), OrderedSet()
        for split in ['train', 'test', 'valid']:
            for line in open('./{}/{}.txt'.format(self.dataset, split)):
                sub, rel, obj = map(str.lower, line.strip().split('\t'))
                ent_set.add(sub)
                rel_set.add(rel)
                ent_set.add(obj)

        self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
        self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
        self.rel2id.update({rel+'_reverse': idx+len(self.rel2id) for idx, rel in enumerate(rel_set)})

        self.id2ent = {idx: ent for ent, idx in self.ent2id.items()}
        self.id2rel = {idx: rel for rel, idx in self.rel2id.items()}

        self.num_ent = len(self.ent2id)
        self.num_rel = len(self.rel2id) // 2

        #read in ids of subjects, relations, and objects for train/test/valid 
        self.data = ddict(list) #stores the triples
        sr2o = ddict(set) #The key of sr20 is (subject, relation), and the items are all the successors following (subject, relation)
        src=[]
        dst=[]
        rels = []
        inver_src = []
        inver_dst = []
        inver_rels = []

        for split in ['train', 'test', 'valid']:
            for line in open('./{}/{}.txt'.format(self.dataset, split)):
                sub, rel, obj = map(str.lower, line.strip().split('\t'))
                sub_id, rel_id, obj_id = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
                self.data[split].append((sub_id, rel_id, obj_id))

                if split == 'train': 
                    sr2o[(sub_id, rel_id)].add(obj_id)
                    sr2o[(obj_id, rel_id+self.num_rel)].add(sub_id) #append the reversed edges
                    src.append(sub_id)
                    dst.append(obj_id)
                    rels.append(rel_id)
                    inver_src.append(obj_id)
                    inver_dst.append(sub_id)
                    inver_rels.append(rel_id+self.num_rel)

        #construct dgl graph
        src = src + inver_src
        dst = dst + inver_dst
        rels = rels + inver_rels
        self.g = dgl.graph((src, dst), num_nodes=self.num_ent)
        self.g.edata['etype'] = torch.Tensor(rels).long()

        #identify in and out edges
        in_edges_mask = [True] * (self.g.num_edges()//2) + [False] * (self.g.num_edges()//2)
        out_edges_mask = [False] * (self.g.num_edges()//2) + [True] * (self.g.num_edges()//2)
        self.g.edata['in_edges_mask'] = torch.Tensor(in_edges_mask)
        self.g.edata['out_edges_mask'] = torch.Tensor(out_edges_mask)

        #Prepare train/valid/test data
        self.data = dict(self.data)
        self.sr2o = {k: list(v) for k, v in sr2o.items()} #store only the train data

        for split in ['test', 'valid']:
            for sub, rel, obj in self.data[split]:
                sr2o[(sub, rel)].add(obj)
                sr2o[(obj, rel+self.num_rel)].add(sub)

        self.sr2o_all = {k: list(v) for k, v in sr2o.items()} #store all the data
        self.triples  = ddict(list)

        for (sub, rel), obj in self.sr2o.items():
            self.triples['train'].append({'triple':(sub, rel, -1), 'label': self.sr2o[(sub, rel)]})

        for split in ['test', 'valid']:
            for sub, rel, obj in self.data[split]:
                rel_inv = rel + self.num_rel
                self.triples['{}_{}'.format(split, 'tail')].append({'triple': (sub, rel, obj), 'label': self.sr2o_all[(sub, rel)]})
                self.triples['{}_{}'.format(split, 'head')].append({'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})

        self.triples = dict(self.triples)

        def get_train_data_loader(split, batch_size, shuffle=True):
            return  DataLoader(
                    TrainDataset(self.triples[split], self.num_ent, self.lbl_smooth),
                    batch_size      = batch_size,
                    shuffle         = shuffle,
                    num_workers     = max(0, self.num_workers),
                    collate_fn      = TrainDataset.collate_fn
                )

        def get_test_data_loader(split, batch_size, shuffle=True):
            return  DataLoader(
                    TestDataset(self.triples[split], self.num_ent),
                    batch_size      = batch_size,
                    shuffle         = shuffle,
                    num_workers     = max(0, self.num_workers),
                    collate_fn      = TestDataset.collate_fn
                )

        #train/valid/test dataloaders
        self.data_iter = {
            'train':        get_train_data_loader('train', self.batch_size),
            'valid_head':   get_test_data_loader('valid_head', self.batch_size),
            'valid_tail':   get_test_data_loader('valid_tail', self.batch_size),
            'test_head':    get_test_data_loader('test_head', self.batch_size),
            'test_tail':    get_test_data_loader('test_tail', self.batch_size),
        }