utils.py 1.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import dgl
from dgl.data import CoraGraphDataset, CiteseerGraphDataset

def load_data(args):
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))
    g = data[0]
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        g = g.int().to(args.gpu)
    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    test_mask = g.ndata['test_mask']
    g = dgl.add_self_loop(g)
    return g, features, labels, train_mask, test_mask, data.num_classes, cuda

def svd_feature(features, d=200):
    ''' Get 200-dimensional node features, to avoid curse of dimensionality
    '''
    if( features.shape[1] <= d ): return features
    U, S, VT = torch.svd(features)
    res = torch.mm(U[:, 0:d], torch.diag(S[0:d]))
    return res

def process_classids(labels_temp):
    ''' Reorder the remaining classes with unseen classes removed.
        Input: the label only removing unseen classes
        Output: the label with reordered classes
    '''
    labeldict = {}
    num=0
    for i in labels_temp:
        labeldict[int(i)]=1
    labellist=sorted(labeldict)
    for label in labellist:
        labeldict[int(label)]=num
        num=num+1
    for i in range(labels_temp.numel()):
        labels_temp[i]=labeldict[int(labels_temp[i])]
    return labels_temp