"torchvision/transforms/v2/_transform.py" did not exist on "874581cbe3277be9df8d4fddbc1962fedbf28ba7"
test_rpc.py 8.21 KB
Newer Older
1
2
import os
import time
3
import socket
4
5
6
7

import dgl
import backend as F
import unittest, pytest
8
import multiprocessing as mp
9
from numpy.testing import assert_array_equal
10
from utils import reset_envs, generate_ip_config
11

12
13
14
15
if os.name != 'nt':
    import fcntl
    import struct

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
INTEGER = 2
STR = 'hello world!'
HELLO_SERVICE_ID = 901231
TENSOR = F.zeros((10, 10), F.int64, F.cpu())

def foo(x, y):
    assert x == 123
    assert y == "abc"

class MyRequest(dgl.distributed.Request):
    def __init__(self):
        self.x = 123
        self.y = "abc"
        self.z = F.randn((3, 4))
        self.foo = foo

    def __getstate__(self):
        return self.x, self.y, self.z, self.foo

    def __setstate__(self, state):
        self.x, self.y, self.z, self.foo = state

    def process_request(self, server_state):
        pass

class MyResponse(dgl.distributed.Response):
    def __init__(self):
        self.x = 432

    def __getstate__(self):
        return self.x

    def __setstate__(self, state):
        self.x = state
 
def simple_func(tensor):
    return tensor

class HelloResponse(dgl.distributed.Response):
    def __init__(self, hello_str, integer, tensor):
        self.hello_str = hello_str
        self.integer = integer
        self.tensor = tensor

    def __getstate__(self):
        return self.hello_str, self.integer, self.tensor

    def __setstate__(self, state):
        self.hello_str, self.integer, self.tensor = state

class HelloRequest(dgl.distributed.Request):
    def __init__(self, hello_str, integer, tensor, func):
        self.hello_str = hello_str
        self.integer = integer
        self.tensor = tensor
        self.func = func

    def __getstate__(self):
        return self.hello_str, self.integer, self.tensor, self.func

    def __setstate__(self, state):
        self.hello_str, self.integer, self.tensor, self.func = state

    def process_request(self, server_state):
        assert self.hello_str == STR
        assert self.integer == INTEGER
        new_tensor = self.func(self.tensor)
        res = HelloResponse(self.hello_str, self.integer, new_tensor)
        return res

86
def start_server(num_clients, ip_config, server_id=0):
87
88
    print("Sleep 2 seconds to test client re-connect.")
    time.sleep(2)
Jinjing Zhou's avatar
Jinjing Zhou committed
89
    server_state = dgl.distributed.ServerState(None, local_g=None, partition_book=None)
90
    dgl.distributed.register_service(HELLO_SERVICE_ID, HelloRequest, HelloResponse)
91
92
    print("Start server {}".format(server_id))
    dgl.distributed.start_server(server_id=server_id, 
93
                                 ip_config=ip_config, 
94
                                 num_servers=1,
95
                                 num_clients=num_clients, 
96
                                 server_state=server_state)
97

98
def start_client(ip_config):
99
    dgl.distributed.register_service(HELLO_SERVICE_ID, HelloRequest, HelloResponse)
100
    dgl.distributed.connect_to_server(ip_config=ip_config, num_servers=1)
101
102
103
104
105
106
107
108
109
110
111
112
    req = HelloRequest(STR, INTEGER, TENSOR, simple_func)
    # test send and recv
    dgl.distributed.send_request(0, req)
    res = dgl.distributed.recv_response()
    assert res.hello_str == STR
    assert res.integer == INTEGER
    assert_array_equal(F.asnumpy(res.tensor), F.asnumpy(TENSOR))
    # test remote_call
    target_and_requests = []
    for i in range(10):
        target_and_requests.append((0, req))
    res_list = dgl.distributed.remote_call(target_and_requests)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    for res in res_list:
        assert res.hello_str == STR
        assert res.integer == INTEGER
        assert_array_equal(F.asnumpy(res.tensor), F.asnumpy(TENSOR))
    # test send_request_to_machine
    dgl.distributed.send_request_to_machine(0, req)
    res = dgl.distributed.recv_response()
    assert res.hello_str == STR
    assert res.integer == INTEGER
    assert_array_equal(F.asnumpy(res.tensor), F.asnumpy(TENSOR))
    # test remote_call_to_machine
    target_and_requests = []
    for i in range(10):
        target_and_requests.append((0, req))
    res_list = dgl.distributed.remote_call_to_machine(target_and_requests)
128
129
130
131
    for res in res_list:
        assert res.hello_str == STR
        assert res.integer == INTEGER
        assert_array_equal(F.asnumpy(res.tensor), F.asnumpy(TENSOR))
132

133
def test_serialize():
134
    reset_envs()
135
    os.environ['DGL_DIST_MODE'] = 'distributed'
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    from dgl.distributed.rpc import serialize_to_payload, deserialize_from_payload
    SERVICE_ID = 12345
    dgl.distributed.register_service(SERVICE_ID, MyRequest, MyResponse)
    req = MyRequest()
    data, tensors = serialize_to_payload(req)
    req1 = deserialize_from_payload(MyRequest, data, tensors)
    req1.foo(req1.x, req1.y)
    assert req.x == req1.x
    assert req.y == req1.y
    assert F.array_equal(req.z, req1.z)

    res = MyResponse()
    data, tensors = serialize_to_payload(res)
    res1 = deserialize_from_payload(MyResponse, data, tensors)
    assert res.x == res1.x

def test_rpc_msg():
153
    reset_envs()
154
    os.environ['DGL_DIST_MODE'] = 'distributed'
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    from dgl.distributed.rpc import serialize_to_payload, deserialize_from_payload, RPCMessage
    SERVICE_ID = 32452
    dgl.distributed.register_service(SERVICE_ID, MyRequest, MyResponse)
    req = MyRequest()
    data, tensors = serialize_to_payload(req)
    rpcmsg = RPCMessage(SERVICE_ID, 23, 0, 1, data, tensors)
    assert rpcmsg.service_id == SERVICE_ID
    assert rpcmsg.msg_seq == 23
    assert rpcmsg.client_id == 0
    assert rpcmsg.server_id == 1
    assert len(rpcmsg.data) == len(data)
    assert len(rpcmsg.tensors) == 1
    assert F.array_equal(rpcmsg.tensors[0], req.z)

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_rpc():
171
    reset_envs()
172
    os.environ['DGL_DIST_MODE'] = 'distributed'
173
    generate_ip_config("rpc_ip_config.txt", 1, 1)
174
    ctx = mp.get_context('spawn')
175
176
    pserver = ctx.Process(target=start_server, args=(1, "rpc_ip_config.txt"))
    pclient = ctx.Process(target=start_client, args=("rpc_ip_config.txt",))
177
178
179
180
    pserver.start()
    pclient.start()
    pserver.join()
    pclient.join()
181

182
183
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_multi_client():
184
    reset_envs()
185
    os.environ['DGL_DIST_MODE'] = 'distributed'
186
    generate_ip_config("rpc_ip_config_mul_client.txt", 1, 1)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    ctx = mp.get_context('spawn')
    pserver = ctx.Process(target=start_server, args=(10, "rpc_ip_config_mul_client.txt"))
    pclient_list = []
    for i in range(10):
        pclient = ctx.Process(target=start_client, args=("rpc_ip_config_mul_client.txt",))
        pclient_list.append(pclient)
    pserver.start()
    for i in range(10):
        pclient_list[i].start()
    for i in range(10):
        pclient_list[i].join()
    pserver.join()


201
202
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_multi_thread_rpc():
203
    reset_envs()
204
205
    os.environ['DGL_DIST_MODE'] = 'distributed'
    num_servers = 2
206
    generate_ip_config("rpc_ip_config_multithread.txt", num_servers, num_servers)
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    ctx = mp.get_context('spawn')
    pserver_list = []
    for i in range(num_servers):
        pserver = ctx.Process(target=start_server, args=(1, "rpc_ip_config_multithread.txt", i))
        pserver.start()
        pserver_list.append(pserver)
    def start_client_multithread(ip_config):
        import threading
        dgl.distributed.connect_to_server(ip_config=ip_config, num_servers=1)
        dgl.distributed.register_service(HELLO_SERVICE_ID, HelloRequest, HelloResponse)
        
        req = HelloRequest(STR, INTEGER, TENSOR, simple_func)
        dgl.distributed.send_request(0, req)

        def subthread_call(server_id):            
            req = HelloRequest(STR, INTEGER, TENSOR+ server_id, simple_func)
            dgl.distributed.send_request(server_id, req)
        
        
        subthread = threading.Thread(target=subthread_call, args=(1,))
        subthread.start()
        subthread.join()
        
        res0 = dgl.distributed.recv_response()
        res1 = dgl.distributed.recv_response()
        assert_array_equal(F.asnumpy(res0.tensor), F.asnumpy(TENSOR))
        assert_array_equal(F.asnumpy(res1.tensor), F.asnumpy(TENSOR+1))
        dgl.distributed.exit_client()

    start_client_multithread("rpc_ip_config_multithread.txt")
    pserver.join()


240
241
242
243
if __name__ == '__main__':
    test_serialize()
    test_rpc_msg()
    test_rpc()
244
    test_multi_client()
245
    test_multi_thread_rpc()