train.py 5.8 KB
Newer Older
Zhengwei's avatar
Zhengwei committed
1
2
import argparse, time
import numpy as np
3
import networkx as nx
Zhengwei's avatar
Zhengwei committed
4
5
6
import torch
import torch.nn as nn
import torch.nn.functional as F
7
import dgl
Zhengwei's avatar
Zhengwei committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgi import DGI, Classifier

def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
25
    g = data[0]
26
27
    features = torch.FloatTensor(g.ndata['feat'])
    labels = torch.LongTensor(g.ndata['label'])
28
    if hasattr(torch, 'BoolTensor'):
29
30
31
        train_mask = torch.BoolTensor(g.ndata['train_mask'])
        val_mask = torch.BoolTensor(g.ndata['val_mask'])
        test_mask = torch.BoolTensor(g.ndata['test_mask'])
32
    else:
33
34
35
        train_mask = torch.ByteTensor(g.ndata['train_mask'])
        val_mask = torch.ByteTensor(g.ndata['val_mask'])
        test_mask = torch.ByteTensor(g.ndata['test_mask'])
Zhengwei's avatar
Zhengwei committed
36
    in_feats = features.shape[1]
37
    n_classes = data.num_classes
38
    n_edges = g.number_of_edges()
Zhengwei's avatar
Zhengwei committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # add self loop
    if args.self_loop:
53
54
        g = dgl.remove_self_loop(g)
        g = dgl.add_self_loop(g)
Zhengwei's avatar
Zhengwei committed
55
56
    n_edges = g.number_of_edges()

57
58
    if args.gpu >= 0:
        g = g.to(args.gpu)
Zhengwei's avatar
Zhengwei committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    # create DGI model
    dgi = DGI(g,
              in_feats,
              args.n_hidden,
              args.n_layers,
              nn.PReLU(args.n_hidden),
              args.dropout)

    if cuda:
        dgi.cuda()

    dgi_optimizer = torch.optim.Adam(dgi.parameters(),
                                     lr=args.dgi_lr,
                                     weight_decay=args.weight_decay)

    # train deep graph infomax
    cnt_wait = 0
    best = 1e9
    best_t = 0
    dur = []
    for epoch in range(args.n_dgi_epochs):
        dgi.train()
        if epoch >= 3:
            t0 = time.time()

        dgi_optimizer.zero_grad()
        loss = dgi(features)
        loss.backward()
        dgi_optimizer.step()

        if loss < best:
            best = loss
            best_t = epoch
            cnt_wait = 0
            torch.save(dgi.state_dict(), 'best_dgi.pkl')
        else:
            cnt_wait += 1

        if cnt_wait == args.patience:
            print('Early stopping!')
            break

        if epoch >= 3:
            dur.append(time.time() - t0)

        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | "
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            n_edges / np.mean(dur) / 1000))

    # create classifier model
    classifier = Classifier(args.n_hidden, n_classes)
    if cuda:
        classifier.cuda()

    classifier_optimizer = torch.optim.Adam(classifier.parameters(),
                                            lr=args.classifier_lr,
                                            weight_decay=args.weight_decay)

    # train classifier
    print('Loading {}th epoch'.format(best_t))
    dgi.load_state_dict(torch.load('best_dgi.pkl'))
    embeds = dgi.encoder(features, corrupt=False)
    embeds = embeds.detach()
    dur = []
    for epoch in range(args.n_classifier_epochs):
        classifier.train()
        if epoch >= 3:
            t0 = time.time()

        classifier_optimizer.zero_grad()
        preds = classifier(embeds)
        loss = F.nll_loss(preds[train_mask], labels[train_mask])
        loss.backward()
        classifier_optimizer.step()
133

Zhengwei's avatar
Zhengwei committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(classifier, embeds, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(classifier, embeds, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='DGI')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--dgi-lr", type=float, default=1e-3,
                        help="dgi learning rate")
    parser.add_argument("--classifier-lr", type=float, default=1e-2,
                        help="classifier learning rate")
    parser.add_argument("--n-dgi-epochs", type=int, default=300,
                        help="number of training epochs")
    parser.add_argument("--n-classifier-epochs", type=int, default=300,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=512,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=0.,
                        help="Weight for L2 loss")
    parser.add_argument("--patience", type=int, default=20,
                        help="early stop patience condition")
    parser.add_argument("--self-loop", action='store_true',
                        help="graph self-loop (default=False)")
    parser.set_defaults(self_loop=False)
    args = parser.parse_args()
    print(args)
174

Zhengwei's avatar
Zhengwei committed
175
    main(args)