gatv2.py 1.78 KB
Newer Older
Shaked Brody's avatar
Shaked Brody committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Graph Attention Networks in DGL using SPMV optimization.
References
----------
Paper: https://arxiv.org/pdf/2105.14491.pdf
Author's code: https://github.com/tech-srl/how_attentive_are_gats
"""

import torch
import torch.nn as nn
from dgl.nn import GATv2Conv
    

class GATv2(nn.Module):
    def __init__(self,
                 num_layers,
                 in_dim,
                 num_hidden,
                 num_classes,
                 heads,
                 activation,
                 feat_drop,
                 attn_drop,
                 negative_slope,
                 residual):
        super(GATv2, self).__init__()
        self.num_layers = num_layers
        self.gatv2_layers = nn.ModuleList()
        self.activation = activation
        # input projection (no residual)
        self.gatv2_layers.append(GATv2Conv(
            in_dim, num_hidden, heads[0],
            feat_drop, attn_drop, negative_slope, False, self.activation, bias=False, share_weights=True))
        # hidden layers
        for l in range(1, num_layers):
            # due to multi-head, the in_dim = num_hidden * num_heads
            self.gatv2_layers.append(GATv2Conv(
                num_hidden * heads[l-1], num_hidden, heads[l],
                feat_drop, attn_drop, negative_slope, residual, self.activation, bias=False, share_weights=True))
        # output projection
        self.gatv2_layers.append(GATv2Conv(
            num_hidden * heads[-2], num_classes, heads[-1],
            feat_drop, attn_drop, negative_slope, residual, None, bias=False, share_weights=True))

    def forward(self, g, inputs):
        h = inputs
        for l in range(self.num_layers):
            h = self.gatv2_layers[l](h).flatten(1)
        # output projection
        logits = self.gatv2_layers[-1](h).mean(1)
        return logits