test_propagate.py 2.16 KB
Newer Older
1
2
import dgl
import networkx as nx
3
import backend as F
4
5
6
7
8
9
import utils as U

def mfunc(edges):
    return {'m' : edges.src['x']}

def rfunc(nodes):
10
    msg = F.sum(nodes.mailbox['m'], 1)
11
12
13
14
    return {'x' : nodes.data['x'] + msg}

def test_prop_nodes_bfs():
    g = dgl.DGLGraph(nx.path_graph(5))
15
    g.ndata['x'] = F.ones((5, 2))
16
17
18
19
20
    g.register_message_func(mfunc)
    g.register_reduce_func(rfunc)

    dgl.prop_nodes_bfs(g, 0)
    # pull nodes using bfs order will result in a cumsum[i] + data[i] + data[i+1]
21
22
    assert F.allclose(g.ndata['x'],
            F.tensor([[2., 2.], [4., 4.], [6., 6.], [8., 8.], [9., 9.]]))
23
24
25
26
27
28

def test_prop_edges_dfs():
    g = dgl.DGLGraph(nx.path_graph(5))
    g.register_message_func(mfunc)
    g.register_reduce_func(rfunc)

29
    g.ndata['x'] = F.ones((5, 2))
30
31
    dgl.prop_edges_dfs(g, 0)
    # snr using dfs results in a cumsum
32
33
    assert F.allclose(g.ndata['x'],
            F.tensor([[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]]))
34

35
    g.ndata['x'] = F.ones((5, 2))
36
37
    dgl.prop_edges_dfs(g, 0, has_reverse_edge=True)
    # result is cumsum[i] + cumsum[i-1]
38
39
    assert F.allclose(g.ndata['x'],
            F.tensor([[1., 1.], [3., 3.], [5., 5.], [7., 7.], [9., 9.]]))
40

41
    g.ndata['x'] = F.ones((5, 2))
42
43
    dgl.prop_edges_dfs(g, 0, has_nontree_edge=True)
    # result is cumsum[i] + cumsum[i+1]
44
45
    assert F.allclose(g.ndata['x'],
            F.tensor([[3., 3.], [5., 5.], [7., 7.], [9., 9.], [5., 5.]]))
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

def test_prop_nodes_topo():
    # bi-directional chain
    g = dgl.DGLGraph(nx.path_graph(5))
    assert U.check_fail(dgl.prop_nodes_topo, g)  # has loop

    # tree
    tree = dgl.DGLGraph()
    tree.add_nodes(5)
    tree.add_edge(1, 0)
    tree.add_edge(2, 0)
    tree.add_edge(3, 2)
    tree.add_edge(4, 2)
    tree.register_message_func(mfunc)
    tree.register_reduce_func(rfunc)
    # init node feature data
62
    tree.ndata['x'] = F.zeros((5, 2))
63
    # set all leaf nodes to be ones
64
    tree.nodes[[1, 3, 4]].data['x'] = F.ones((3, 2))
65
66
    dgl.prop_nodes_topo(tree)
    # root node get the sum
67
    assert F.allclose(tree.nodes[0].data['x'], F.tensor([[3., 3.]]))
68
69
70
71
72

if __name__ == '__main__':
    test_prop_nodes_bfs()
    test_prop_edges_dfs()
    test_prop_nodes_topo()