gcn_concat.py 6.31 KB
Newer Older
Ziyue Huang's avatar
Ziyue Huang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn
GCN with batch processing
"""
import argparse
import numpy as np
import time
import mxnet as mx
from mxnet import gluon
import dgl
import dgl.function as fn
14
15
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
Ziyue Huang's avatar
Ziyue Huang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77


class GCNLayer(gluon.Block):
    def __init__(self,
                 g,
                 out_feats,
                 activation,
                 dropout):
        super(GCNLayer, self).__init__()
        self.g = g
        self.dense = gluon.nn.Dense(out_feats, activation)
        self.dropout = dropout

    def forward(self, h):
        self.g.ndata['h'] = h * self.g.ndata['out_norm']
        self.g.update_all(fn.copy_src(src='h', out='m'),
                          fn.sum(msg='m', out='accum'))
        accum = self.g.ndata.pop('accum')
        accum = self.dense(accum * self.g.ndata['in_norm'])
        if self.dropout:
            accum = mx.nd.Dropout(accum, p=self.dropout)
        h = self.g.ndata.pop('h')
        h = mx.nd.concat(h / self.g.ndata['out_norm'], accum, dim=1)
        return h


class GCN(gluon.Block):
    def __init__(self,
                 g,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.inp_layer = gluon.nn.Dense(n_hidden, activation)
        self.dropout = dropout
        self.layers = gluon.nn.Sequential()
        for i in range(n_layers):
            self.layers.add(GCNLayer(g, n_hidden, activation, dropout))
        self.out_layer = gluon.nn.Dense(n_classes)


    def forward(self, features):
        emb_inp = [features, self.inp_layer(features)]
        if self.dropout:
            emb_inp[-1] = mx.nd.Dropout(emb_inp[-1], p=self.dropout)
        h = mx.nd.concat(*emb_inp, dim=1)
        for layer in self.layers:
            h = layer(h)
        h = self.out_layer(h)
        return h


def evaluate(model, features, labels, mask):
    pred = model(features).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()


def main(args):
    # load and preprocess dataset
78
79
80
81
82
83
84
85
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))
Ziyue Huang's avatar
Ziyue Huang committed
86

87
88
89
90
91
92
93
94
    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.to(ctx)
Ziyue Huang's avatar
Ziyue Huang committed
95

96
97
98
99
100
    features = g.ndata['feat']
    labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
Ziyue Huang's avatar
Ziyue Huang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              train_mask.sum().asscalar(),
              val_mask.sum().asscalar(),
              test_mask.sum().asscalar()))

115
116
117
118
    # add self loop
    if args.self_loop:
        g = dgl.remove_self_loop(g)
        g = dgl.add_self_loop(g)
Ziyue Huang's avatar
Ziyue Huang committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    # normalization
    in_degs = g.in_degrees().astype('float32')
    out_degs = g.out_degrees().astype('float32')
    in_norm = mx.nd.power(in_degs, -0.5)
    out_norm = mx.nd.power(out_degs, -0.5)
    if cuda:
        in_norm = in_norm.as_in_context(ctx)
        out_norm = out_norm.as_in_context(ctx)
    g.ndata['in_norm'] = mx.nd.expand_dims(in_norm, 1)
    g.ndata['out_norm'] = mx.nd.expand_dims(out_norm, 1)

    model = GCN(g,
                args.n_hidden,
                n_classes,
                args.n_layers,
                'relu',
                args.dropout,
                )
    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
            help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    parser.add_argument("--normalization",
            choices=['sym','left'], default=None,
            help="graph normalization types (default=None)")
    parser.add_argument("--self-loop", action='store_true',
            help="graph self-loop (default=False)")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
            help="Weight for L2 loss")
    args = parser.parse_args()

    print(args)

    main(args)