test_dataloader.py 19.1 KB
Newer Older
1
import os
2
import dgl
3
import dgl.ops as OPS
4
5
import backend as F
import unittest
6
import torch
7
8
from torch.utils.data import DataLoader
from collections import defaultdict
9
from collections.abc import Iterator
10
from itertools import product
11
import pytest
12

13
def _check_neighbor_sampling_dataloader(g, nids, dl, mode, collator):
14
15
    seeds = defaultdict(list)

16
17
    for item in dl:
        if mode == 'node':
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
18
            input_nodes, output_nodes, blocks = item
19
        elif mode == 'edge':
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
20
            input_nodes, pair_graph, blocks = item
21
22
            output_nodes = pair_graph.ndata[dgl.NID]
        elif mode == 'link':
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
23
            input_nodes, pair_graph, neg_graph, blocks = item
24
25
26
27
            output_nodes = pair_graph.ndata[dgl.NID]
            for ntype in pair_graph.ntypes:
                assert F.array_equal(pair_graph.nodes[ntype].data[dgl.NID], neg_graph.nodes[ntype].data[dgl.NID])

28
29
30
31
32
33
34
        if len(g.ntypes) > 1:
            for ntype in g.ntypes:
                assert F.array_equal(input_nodes[ntype], blocks[0].srcnodes[ntype].data[dgl.NID])
                assert F.array_equal(output_nodes[ntype], blocks[-1].dstnodes[ntype].data[dgl.NID])
        else:
            assert F.array_equal(input_nodes, blocks[0].srcdata[dgl.NID])
            assert F.array_equal(output_nodes, blocks[-1].dstdata[dgl.NID])
35

36
37
38
39
40
41
42
        prev_dst = {ntype: None for ntype in g.ntypes}
        for block in blocks:
            for canonical_etype in block.canonical_etypes:
                utype, etype, vtype = canonical_etype
                uu, vv = block.all_edges(order='eid', etype=canonical_etype)
                src = block.srcnodes[utype].data[dgl.NID]
                dst = block.dstnodes[vtype].data[dgl.NID]
43
44
45
46
                assert F.array_equal(
                    block.srcnodes[utype].data['feat'], g.nodes[utype].data['feat'][src])
                assert F.array_equal(
                    block.dstnodes[vtype].data['feat'], g.nodes[vtype].data['feat'][dst])
47
48
49
50
51
52
                if prev_dst[utype] is not None:
                    assert F.array_equal(src, prev_dst[utype])
                u = src[uu]
                v = dst[vv]
                assert F.asnumpy(g.has_edges_between(u, v, etype=canonical_etype)).all()
                eid = block.edges[canonical_etype].data[dgl.EID]
53
54
55
                assert F.array_equal(
                    block.edges[canonical_etype].data['feat'],
                    g.edges[canonical_etype].data['feat'][eid])
56
57
58
59
60
61
62
63
64
                ufound, vfound = g.find_edges(eid, etype=canonical_etype)
                assert F.array_equal(ufound, u)
                assert F.array_equal(vfound, v)
            for ntype in block.dsttypes:
                src = block.srcnodes[ntype].data[dgl.NID]
                dst = block.dstnodes[ntype].data[dgl.NID]
                assert F.array_equal(src[:block.number_of_dst_nodes(ntype)], dst)
                prev_dst[ntype] = dst

65
66
67
68
69
70
71
72
        if mode == 'node':
            for ntype in blocks[-1].dsttypes:
                seeds[ntype].append(blocks[-1].dstnodes[ntype].data[dgl.NID])
        elif mode == 'edge' or mode == 'link':
            for etype in pair_graph.canonical_etypes:
                seeds[etype].append(pair_graph.edges[etype].data[dgl.EID])

    # Check if all nodes/edges are iterated
73
74
    seeds = {k: F.cat(v, 0) for k, v in seeds.items()}
    for k, v in seeds.items():
75
76
77
78
79
80
81
        if k in nids:
            seed_set = set(F.asnumpy(nids[k]))
        elif isinstance(k, tuple) and k[1] in nids:
            seed_set = set(F.asnumpy(nids[k[1]]))
        else:
            continue

82
83
84
85
        v_set = set(F.asnumpy(v))
        assert v_set == seed_set

def test_neighbor_sampler_dataloader():
86
    g = dgl.heterograph({('user', 'follow', 'user'): ([0, 0, 0, 1, 1], [1, 2, 3, 3, 4])},
87
                        {'user': 6}).long()
88
    g = dgl.to_bidirected(g).to(F.ctx())
89
90
    g.ndata['feat'] = F.randn((6, 8))
    g.edata['feat'] = F.randn((10, 4))
91
92
93
    reverse_eids = F.tensor([5, 6, 7, 8, 9, 0, 1, 2, 3, 4], dtype=F.int64)
    g_sampler1 = dgl.dataloading.MultiLayerNeighborSampler([2, 2], return_eids=True)
    g_sampler2 = dgl.dataloading.MultiLayerFullNeighborSampler(2, return_eids=True)
94
95

    hg = dgl.heterograph({
96
97
98
99
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
100
    }).long().to(F.ctx())
101
102
103
104
    for ntype in hg.ntypes:
        hg.nodes[ntype].data['feat'] = F.randn((hg.number_of_nodes(ntype), 8))
    for etype in hg.canonical_etypes:
        hg.edges[etype].data['feat'] = F.randn((hg.number_of_edges(etype), 4))
105
106
107
108
109
110
111
112
113
114
115
116
    hg_sampler1 = dgl.dataloading.MultiLayerNeighborSampler(
        [{'play': 1, 'played-by': 1, 'follow': 2, 'followed-by': 1}] * 2, return_eids=True)
    hg_sampler2 = dgl.dataloading.MultiLayerFullNeighborSampler(2, return_eids=True)
    reverse_etypes = {'follow': 'followed-by', 'followed-by': 'follow', 'play': 'played-by', 'played-by': 'play'}

    collators = []
    graphs = []
    nids = []
    modes = []
    for seeds, sampler in product(
            [F.tensor([0, 1, 2, 3, 5], dtype=F.int64), F.tensor([4, 5], dtype=F.int64)],
            [g_sampler1, g_sampler2]):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
117
        collators.append(dgl.dataloading.NodeCollator(g, seeds, sampler))
118
119
120
121
        graphs.append(g)
        nids.append({'user': seeds})
        modes.append('node')

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
122
        collators.append(dgl.dataloading.EdgeCollator(g, seeds, sampler))
123
124
125
126
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('edge')

127
128
129
130
131
132
        collators.append(dgl.dataloading.EdgeCollator(
            g, seeds, sampler, exclude='self'))
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('edge')

133
        collators.append(dgl.dataloading.EdgeCollator(
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
134
            g, seeds, sampler, exclude='reverse_id', reverse_eids=reverse_eids))
135
136
137
138
139
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('edge')

        collators.append(dgl.dataloading.EdgeCollator(
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
140
            g, seeds, sampler, negative_sampler=dgl.dataloading.negative_sampler.Uniform(2)))
141
142
143
144
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('link')

145
146
147
148
149
150
        collators.append(dgl.dataloading.EdgeCollator(
            g, seeds, sampler, exclude='self', negative_sampler=dgl.dataloading.negative_sampler.Uniform(2)))
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('link')

151
152
        collators.append(dgl.dataloading.EdgeCollator(
            g, seeds, sampler, exclude='reverse_id', reverse_eids=reverse_eids,
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
153
            negative_sampler=dgl.dataloading.negative_sampler.Uniform(2)))
154
155
156
157
158
159
160
161
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('link')

    for seeds, sampler in product(
            [{'user': F.tensor([0, 1, 3, 5], dtype=F.int64), 'game': F.tensor([0, 1, 2], dtype=F.int64)},
             {'user': F.tensor([4, 5], dtype=F.int64), 'game': F.tensor([0, 1, 2], dtype=F.int64)}],
            [hg_sampler1, hg_sampler2]):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
162
        collators.append(dgl.dataloading.NodeCollator(hg, seeds, sampler))
163
164
165
166
167
168
169
170
        graphs.append(hg)
        nids.append(seeds)
        modes.append('node')

    for seeds, sampler in product(
            [{'follow': F.tensor([0, 1, 3, 5], dtype=F.int64), 'play': F.tensor([1, 3], dtype=F.int64)},
             {'follow': F.tensor([4, 5], dtype=F.int64), 'play': F.tensor([1, 3], dtype=F.int64)}],
            [hg_sampler1, hg_sampler2]):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
171
        collators.append(dgl.dataloading.EdgeCollator(hg, seeds, sampler))
172
173
174
175
176
        graphs.append(hg)
        nids.append(seeds)
        modes.append('edge')

        collators.append(dgl.dataloading.EdgeCollator(
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
177
            hg, seeds, sampler, exclude='reverse_types', reverse_etypes=reverse_etypes))
178
179
180
181
182
        graphs.append(hg)
        nids.append(seeds)
        modes.append('edge')

        collators.append(dgl.dataloading.EdgeCollator(
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
183
            hg, seeds, sampler, negative_sampler=dgl.dataloading.negative_sampler.Uniform(2)))
184
185
186
187
188
189
        graphs.append(hg)
        nids.append(seeds)
        modes.append('link')

        collators.append(dgl.dataloading.EdgeCollator(
            hg, seeds, sampler, exclude='reverse_types', reverse_etypes=reverse_etypes,
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
190
            negative_sampler=dgl.dataloading.negative_sampler.Uniform(2)))
191
192
193
194
195
        graphs.append(hg)
        nids.append(seeds)
        modes.append('link')

    for _g, nid, collator, mode in zip(graphs, nids, collators, modes):
196
197
        dl = DataLoader(
            collator.dataset, collate_fn=collator.collate, batch_size=2, shuffle=True, drop_last=False)
198
        assert isinstance(iter(dl), Iterator)
199
        _check_neighbor_sampling_dataloader(_g, nid, dl, mode, collator)
200

201
202
203
204
205
def test_graph_dataloader():
    batch_size = 16
    num_batches = 2
    minigc_dataset = dgl.data.MiniGCDataset(batch_size * num_batches, 10, 20)
    data_loader = dgl.dataloading.GraphDataLoader(minigc_dataset, batch_size=batch_size, shuffle=True)
206
    assert isinstance(iter(data_loader), Iterator)
207
208
209
    for graph, label in data_loader:
        assert isinstance(graph, dgl.DGLGraph)
        assert F.asnumpy(label).shape[0] == batch_size
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@pytest.mark.parametrize('num_workers', [0, 4])
def test_cluster_gcn(num_workers):
    dataset = dgl.data.CoraFullDataset()
    g = dataset[0]
    sgiter = dgl.dataloading.ClusterGCNSubgraphIterator(g, 100, '.', refresh=True)
    dataloader = dgl.dataloading.GraphDataLoader(sgiter, batch_size=4, num_workers=num_workers)
    for sg in dataloader:
        assert sg.batch_size == 4

    sgiter = dgl.dataloading.ClusterGCNSubgraphIterator(g, 100, '.', refresh=False) # use cache
    dataloader = dgl.dataloading.GraphDataLoader(sgiter, batch_size=4, num_workers=num_workers)
    for sg in dataloader:
        assert sg.batch_size == 4

@pytest.mark.parametrize('num_workers', [0, 4])
def test_shadow(num_workers):
    g = dgl.data.CoraFullDataset()[0]
    sampler = dgl.dataloading.ShaDowKHopSampler([5, 10, 15])
    dataloader = dgl.dataloading.NodeDataLoader(
        g, torch.arange(g.num_nodes()), sampler,
        batch_size=5, shuffle=True, drop_last=False, num_workers=num_workers)
    for i, (input_nodes, output_nodes, (subgraph,)) in enumerate(dataloader):
        assert torch.equal(input_nodes, subgraph.ndata[dgl.NID])
        assert torch.equal(input_nodes[:output_nodes.shape[0]], output_nodes)
        assert torch.equal(subgraph.ndata['label'], g.ndata['label'][input_nodes])
        assert torch.equal(subgraph.ndata['feat'], g.ndata['feat'][input_nodes])
        if i == 5:
            break


@pytest.mark.parametrize('num_workers', [0, 4])
def test_neighbor_nonuniform(num_workers):
    g = dgl.graph(([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]))
    g.edata['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(g, [0, 1], sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes.item()
        neighbors = set(input_nodes[1:].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

    g = dgl.heterograph({
        ('B', 'BA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        ('C', 'CA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        })
    g.edges['BA'].data['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    g.edges['CA'].data['p'] = torch.FloatTensor([0, 0, 1, 1, 0, 0, 1, 1])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(
        g, {'A': [0, 1]}, sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes['A'].item()
        # Seed and neighbors are of different node types so slicing is not necessary here.
        neighbors = set(input_nodes['B'].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

        neighbors = set(input_nodes['C'].cpu().numpy())
        if seed == 1:
            assert neighbors == {7, 8}
        elif seed == 0:
            assert neighbors == {3, 4}


281
282
283
284
285
286
287
288
289
290
def _check_device(data):
    if isinstance(data, dict):
        for k, v in data.items():
            assert v.device == F.ctx()
    elif isinstance(data, list):
        for v in data:
            assert v.device == F.ctx()
    else:
        assert data.device == F.ctx()

291
292
@pytest.mark.parametrize('sampler_name', ['full', 'neighbor', 'neighbor2', 'shadow'])
def test_node_dataloader(sampler_name):
Xin Yao's avatar
Xin Yao committed
293
294
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    g1.ndata['label'] = F.copy_to(F.randn((g1.num_nodes(),)), F.cpu())

    for load_input, load_output in [(None, None), ({'feat': g1.ndata['feat']}, {'label': g1.ndata['label']})]:
        for async_load in [False, True]:
            for num_workers in [0, 1, 2]:
                sampler = {
                    'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
                    'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3]),
                    'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3]),
                    'shadow': dgl.dataloading.ShaDowKHopSampler([3, 3])}[sampler_name]
                dataloader = dgl.dataloading.NodeDataLoader(
                    g1, g1.nodes(), sampler, device=F.ctx(),
                    load_input=load_input,
                    load_output=load_output,
                    async_load=async_load,
                    batch_size=g1.num_nodes(),
                    num_workers=num_workers)
                for input_nodes, output_nodes, blocks in dataloader:
                    _check_device(input_nodes)
                    _check_device(output_nodes)
                    _check_device(blocks)
                    if load_input:
                        _check_device(blocks[0].srcdata['feat'])
                        OPS.copy_u_sum(blocks[0], blocks[0].srcdata['feat'])
                    if load_output:
                        _check_device(blocks[-1].dstdata['label'])
                        OPS.copy_u_sum(blocks[-1], blocks[-1].dstdata['label'])
322
323
324
325
326
327

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
Xin Yao's avatar
Xin Yao committed
328
    })
329
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
330
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
331
    batch_size = max(g2.num_nodes(nty) for nty in g2.ntypes)
332
333
334
335
336
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
        'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3]),
        'shadow': dgl.dataloading.ShaDowKHopSampler([{etype: 3 for etype in g2.etypes}] * 2)}[sampler_name]
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    for async_load in [False, True]:
        dataloader = dgl.dataloading.NodeDataLoader(
            g2, {nty: g2.nodes(nty) for nty in g2.ntypes},
            sampler, device=F.ctx(), async_load=async_load, batch_size=batch_size)
        assert isinstance(iter(dataloader), Iterator)
        for input_nodes, output_nodes, blocks in dataloader:
            _check_device(input_nodes)
            _check_device(output_nodes)
            _check_device(blocks)

    status = False
    try:
        dgl.dataloading.NodeDataLoader(
            g2, {nty: g2.nodes(nty) for nty in g2.ntypes},
            sampler, device=F.ctx(), load_input={'feat': g1.ndata['feat']}, batch_size=batch_size)
    except dgl.DGLError:
        status = True
    assert status
356

357
358
359

@pytest.mark.parametrize('sampler_name', ['full', 'neighbor', 'shadow'])
def test_edge_dataloader(sampler_name):
360
361
    neg_sampler = dgl.dataloading.negative_sampler.Uniform(2)

Xin Yao's avatar
Xin Yao committed
362
363
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
364

365
366
367
368
369
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3]),
        'shadow': dgl.dataloading.ShaDowKHopSampler([3, 3])}[sampler_name]

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
370
    # no negative sampler
371
372
373
374
375
376
377
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(), batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
378
    # negative sampler
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(),
        negative_sampler=neg_sampler, batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
Xin Yao's avatar
Xin Yao committed
393
    })
394
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
395
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
396
    batch_size = max(g2.num_edges(ety) for ety in g2.canonical_etypes)
397
398
399
400
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
        'shadow': dgl.dataloading.ShaDowKHopSampler([{etype: 3 for etype in g2.etypes}] * 2)}[sampler_name]
401

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
402
    # no negative sampler
403
404
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
405
406
        sampler, device=F.ctx(), batch_size=batch_size)
    for input_nodes, pos_pair_graph, blocks in dataloader:
407
408
409
410
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
411
    # negative sampler
412
413
414
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
        sampler, device=F.ctx(), negative_sampler=neg_sampler,
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
415
        batch_size=batch_size)
416

417
    assert isinstance(iter(dataloader), Iterator)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
418
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
419
420
421
422
423
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

424
425
if __name__ == '__main__':
    test_neighbor_sampler_dataloader()
426
    test_graph_dataloader()
427
428
429
430
431
    test_cluster_gcn(0)
    test_neighbor_nonuniform(0)
    for sampler in ['full', 'neighbor', 'shadow']:
        test_node_dataloader(sampler)
        test_edge_dataloader(sampler)