test_kernel.py 7.33 KB
Newer Older
1
2
3
import dgl
import dgl.function as fn
import networkx as nx
4
import numpy as np
5
6
7
import backend as F
from itertools import product

8
np.random.seed(42)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

def udf_copy_src(edges):
    return {'m': edges.src['u']}


def udf_copy_edge(edges):
    return {'m': edges.data['e']}


def udf_sum(nodes):
    return {'r2': nodes.mailbox['m'].sum(1)}


def udf_max(nodes):
    return {'r2': F.max(nodes.mailbox['m'], 1)}


D1 = 5
D2 = 3
D3 = 4
builtin = {'sum': fn.sum, 'max': fn.max}
udf_reduce = {'sum': udf_sum, 'max': udf_max}
fill_value = {'sum': 0, 'max': float("-inf")}


def generate_feature(g, broadcast='none'):
    """Create graph with src, edge, dst feature. broadcast can be 'u',
    'e', 'v', 'none'
    """
    nv = g.number_of_nodes()
    ne = g.number_of_edges()
    if broadcast == 'e':
41
42
43
        u = F.tensor(np.random.randn(nv, D1, D2, D3) + 1)
        e = F.tensor(np.random.randn(ne, D2, 1) - 1)
        v = F.tensor(np.random.randn(nv, D1, D2, D3))
44
    elif broadcast == 'u':
45
46
47
        u = F.tensor(np.random.randn(nv, D2, 1) + 1)
        e = F.tensor(np.random.randn(ne, D1, D2, D3) - 1)
        v = F.tensor(np.random.randn(nv, D1, D2, D3))
48
    elif broadcast == 'v':
49
50
51
        u = F.tensor(np.random.randn(nv, D1, D2, D3) + 1)
        e = F.tensor(np.random.randn(ne, D1, D2, D3) - 1)
        v = F.tensor(np.random.randn(nv, D2, 1))
52
    else:
53
54
55
        u = F.tensor(np.random.randn(nv, D1, D2, D3) + 1)
        e = F.tensor(np.random.randn(ne, D1, D2, D3) - 1)
        v = F.tensor(np.random.randn(nv, D1, D2, D3))
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    return u, v, e


def test_copy_src_reduce():
    def _test(red):
        g = dgl.DGLGraph(nx.erdos_renyi_graph(100, 0.1))
        hu, hv, he = generate_feature(g, 'none')

        g.ndata['u'] = F.attach_grad(F.clone(hu))
        g.ndata['v'] = F.attach_grad(F.clone(hv))
        g.edata['e'] = F.attach_grad(F.clone(he))

        with F.record_grad():
            g.update_all(fn.copy_src(src='u', out='m'),
                         builtin[red](msg='m', out='r1'))
            r1 = g.ndata['r1']
            F.backward(r1.sum())
            n_grad1 = F.grad(g.ndata['u'])

        # reset grad
        g.ndata['u'] = F.attach_grad(F.clone(hu))
        g.ndata['v'] = F.attach_grad(F.clone(hv))
        g.edata['e'] = F.attach_grad(F.clone(he))

        with F.record_grad():
            g.update_all(udf_copy_src, udf_reduce[red])
            r2 = g.ndata['r2']
            F.backward(r2.sum())
            n_grad2 = F.grad(g.ndata['u'])

        assert F.allclose(r1, r2)
        assert(F.allclose(n_grad1, n_grad2))

    _test('sum')
    _test('max')


def test_copy_edge_reduce():
    def _test(red):
        g = dgl.DGLGraph(nx.erdos_renyi_graph(100, 0.1))
        hu, hv, he = generate_feature(g, 'none')
        g.ndata['u'] = F.attach_grad(F.clone(hu))
        g.ndata['v'] = F.attach_grad(F.clone(hv))
        g.edata['e'] = F.attach_grad(F.clone(he))

        with F.record_grad():
            g.update_all(fn.copy_edge(edge='e', out='m'),
                         builtin[red](msg='m', out='r1'))
            r1 = g.ndata['r1']
            F.backward(r1.sum())
            e_grad1 = F.grad(g.edata['e'])

        # reset grad
        g.ndata['u'] = F.attach_grad(F.clone(hu))
        g.ndata['v'] = F.attach_grad(F.clone(hv))
        g.edata['e'] = F.attach_grad(F.clone(he))

        with F.record_grad():
            g.update_all(udf_copy_edge, udf_reduce[red])
            r2 = g.ndata['r2']
            F.backward(r2.sum())
            e_grad2 = F.grad(g.edata['e'])

        assert F.allclose(r1, r2)
        assert(F.allclose(e_grad1, e_grad2))

    _test('sum')
    _test('max')


def test_all_binary_builtins():
    def _test(g, lhs, rhs, binary_op, reducer, broadcast='none'):
        hu, hv, he = generate_feature(g, broadcast)
        g.ndata['u'] = F.attach_grad(F.clone(hu))
        g.ndata['v'] = F.attach_grad(F.clone(hv))
        g.edata['e'] = F.attach_grad(F.clone(he))

        builtin_msg_name = "{}_{}_{}".format(lhs, binary_op, rhs)
        builtin_msg = getattr(fn, builtin_msg_name)
        builtin_red = getattr(fn, reducer)

        def target_feature_switch(g, target):
            if target == "u":
                return g.ndata["u"]
            elif target == "v":
                return g.ndata["v"]
            else:
                return g.edata["e"]

        with F.record_grad():
            g.update_all(builtin_msg(lhs, rhs, 'm'), builtin_red('m', 'r1'))
            r1 = g.ndata['r1']
            F.backward(r1.sum())
            lhs_grad_1 = F.grad(target_feature_switch(g, lhs))
            rhs_grad_1 = F.grad(target_feature_switch(g, rhs))

        # reset grad
        g.ndata['u'] = F.attach_grad(F.clone(hu))
        g.ndata['v'] = F.attach_grad(F.clone(hv))
        g.edata['e'] = F.attach_grad(F.clone(he))

        def target_switch(edges, target):
            if target == "u":
                return edges.src
            elif target == "v":
                return edges.dst
            elif target == "e":
                return edges.data
            else:
                assert(0), "Unknown target {}".format(target)

        def mfunc(edges):
            op = getattr(F, binary_op)
            lhs_data = target_switch(edges, lhs)
            rhs_data = target_switch(edges, rhs)
            return {"m": op(lhs_data[lhs], rhs_data[rhs])}

        def rfunc(nodes):
            op = getattr(F, reducer)
            return {"r2": op(nodes.mailbox['m'], 1)}

        with F.record_grad():
            g.update_all(mfunc, rfunc)
            r2 = g.ndata['r2']
180
            F.backward(r2.sum(), F.tensor([1.]))
181
182
183
            lhs_grad_2 = F.grad(target_feature_switch(g, lhs))
            rhs_grad_2 = F.grad(target_feature_switch(g, rhs))

184
185
186
187
188
189
190
        if reducer == 'prod':
            rtol = 1e-2
            atol = 1e-2
        else:
            rtol = 1e-4
            atol = 1e-4

191
192
193
194
195
196
197
198
        def _print_error(a, b):
            print("ERROR: Test {}_{}_{}_{} {}".
                  format(lhs, binary_op, rhs, reducer, broadcast))
            print(a, b)
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y, rtol, atol):
                    print('@{} {} v.s. {}'.format(i, x, y))

199
        if not F.allclose(r1, r2, rtol, atol):
200
            _print_error(r1, r2)
201
        assert F.allclose(r1, r2, rtol, atol)
202
203

        if not F.allclose(lhs_grad_1, lhs_grad_2, rtol, atol):
204
205
            print("left grad")
            _print_error(lhs_grad_1, lhs_grad_2)
206
        assert(F.allclose(lhs_grad_1, lhs_grad_2, rtol, atol))
207

208
        if not F.allclose(rhs_grad_1, rhs_grad_2, rtol, atol):
209
210
            print("right grad")
            _print_error(rhs_grad_1, rhs_grad_2)
211
        assert(F.allclose(rhs_grad_1, rhs_grad_2, rtol, atol))
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    g = dgl.DGLGraph()
    g.add_nodes(20)
    for i in range(2, 18):
        g.add_edge(0, i)
        g.add_edge(1, i)
        g.add_edge(i, 18)
        g.add_edge(i, 19)
    g.add_edge(18, 0)
    g.add_edge(18, 1)
    g.add_edge(19, 0)
    g.add_edge(19, 1)
    target = ["u", "v", "e"]
    for lhs, rhs in product(target, target):
        if lhs == rhs:
            continue
        for binary_op in ["add", "sub", "mul", "div"]:
            for reducer in ["sum", "max", "min", "prod"]:
                for broadcast in ["none", lhs, rhs]:
                    _test(g, lhs, rhs, binary_op, reducer)

if __name__ == '__main__':
    test_copy_src_reduce()
    test_copy_edge_reduce()
    test_all_binary_builtins()