metapath2vec.py 3.58 KB
Newer Older
ziqiaomeng's avatar
ziqiaomeng committed
1
2
3
4
5
6
7
8
9
import torch
import argparse
import torch.optim as optim
from torch.utils.data import DataLoader

from tqdm import tqdm

from reading_data import DataReader, Metapath2vecDataset
from model import SkipGramModel
10
from download import AminerDataset, CustomDataset
ziqiaomeng's avatar
ziqiaomeng committed
11
12
13
14


class Metapath2VecTrainer:
    def __init__(self, args):
15
16
17
18
19
        if args.aminer:
            dataset = AminerDataset(args.path)
        else:
            dataset = CustomDataset(args.path)
        self.data = DataReader(dataset, args.min_count, args.care_type)
ziqiaomeng's avatar
ziqiaomeng committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        dataset = Metapath2vecDataset(self.data, args.window_size)
        self.dataloader = DataLoader(dataset, batch_size=args.batch_size,
                                     shuffle=True, num_workers=args.num_workers, collate_fn=dataset.collate)

        self.output_file_name = args.output_file
        self.emb_size = len(self.data.word2id)
        self.emb_dimension = args.dim
        self.batch_size = args.batch_size
        self.iterations = args.iterations
        self.initial_lr = args.initial_lr
        self.skip_gram_model = SkipGramModel(self.emb_size, self.emb_dimension)

        self.use_cuda = torch.cuda.is_available()
        self.device = torch.device("cuda" if self.use_cuda else "cpu")
        if self.use_cuda:
            self.skip_gram_model.cuda()

    def train(self):

        for iteration in range(self.iterations):
            print("\n\n\nIteration: " + str(iteration + 1))
            optimizer = optim.SparseAdam(self.skip_gram_model.parameters(), lr=self.initial_lr)
            scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(self.dataloader))

            running_loss = 0.0
            for i, sample_batched in enumerate(tqdm(self.dataloader)):

                if len(sample_batched[0]) > 1:
                    pos_u = sample_batched[0].to(self.device)
                    pos_v = sample_batched[1].to(self.device)
                    neg_v = sample_batched[2].to(self.device)

                    scheduler.step()
                    optimizer.zero_grad()
                    loss = self.skip_gram_model.forward(pos_u, pos_v, neg_v)
                    loss.backward()
                    optimizer.step()

                    running_loss = running_loss * 0.9 + loss.item() * 0.1
                    if i > 0 and i % 500 == 0:
                        print(" Loss: " + str(running_loss))

            self.skip_gram_model.save_embedding(self.data.id2word, self.output_file_name)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Metapath2vec")
    #parser.add_argument('--input_file', type=str, help="input_file")
68
69
    parser.add_argument('--aminer', action='store_true', help='Use AMiner dataset')
    parser.add_argument('--path', type=str, help="input_path")
ziqiaomeng's avatar
ziqiaomeng committed
70
71
72
73
74
75
76
77
78
79
80
81
    parser.add_argument('--output_file', type=str, help='output_file')
    parser.add_argument('--dim', default=128, type=int, help="embedding dimensions")
    parser.add_argument('--window_size', default=7, type=int, help="context window size")
    parser.add_argument('--iterations', default=5, type=int, help="iterations")
    parser.add_argument('--batch_size', default=50, type=int, help="batch size")
    parser.add_argument('--care_type', default=0, type=int, help="if 1, heterogeneous negative sampling, else normal negative sampling")
    parser.add_argument('--initial_lr', default=0.025, type=float, help="learning rate")
    parser.add_argument('--min_count', default=5, type=int, help="min count")
    parser.add_argument('--num_workers', default=16, type=int, help="number of workers")
    args = parser.parse_args()
    m2v = Metapath2VecTrainer(args)
    m2v.train()