"graphbolt/vscode:/vscode.git/clone" did not exist on "f95e9df31f9acb6cd678fa4f58206875cc783b7c"
han.py 5.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
[Heterogeneous Graph Attention Network]
(https://arxiv.org/abs/1903.07293)
"""

import pickle

import dgl.sparse as dglsp
import torch
import torch.nn as nn
import torch.nn.functional as F

from dgl.data.utils import _get_dgl_url, download, get_download_dir
from torch.optim import Adam


class GATConv(nn.Module):
    def __init__(self, in_size, out_size, num_heads, dropout):
        super().__init__()

        self.out_size = out_size
        self.num_heads = num_heads

        self.dropout = nn.Dropout(dropout)
        self.W = nn.Linear(in_size, out_size * num_heads)
        self.a_l = nn.Parameter(torch.zeros(1, out_size, num_heads))
        self.a_r = nn.Parameter(torch.zeros(1, out_size, num_heads))
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain("relu")
        nn.init.xavier_normal_(self.W.weight, gain=gain)
        nn.init.xavier_normal_(self.a_l, gain=gain)
        nn.init.xavier_normal_(self.a_r, gain=gain)

    ###########################################################################
    # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement
    # multihead attention.
    ###########################################################################
    def forward(self, A_hat, Z):
        Z = self.dropout(Z)
        Z = self.W(Z).view(Z.shape[0], self.out_size, self.num_heads)

        # a^T [Wh_i || Wh_j] = a_l Wh_i + a_r Wh_j
        e_l = (Z * self.a_l).sum(dim=1)
        e_r = (Z * self.a_r).sum(dim=1)
        e = e_l[A_hat.row] + e_r[A_hat.col]

        a = F.leaky_relu(e)
        A_atten = dglsp.val_like(A_hat, a).softmax()
        a_drop = self.dropout(A_atten.val)
        A_atten = dglsp.val_like(A_atten, a_drop)
        return dglsp.bspmm(A_atten, Z)


class SemanticAttention(nn.Module):
    def __init__(self, in_size, hidden_size=128):
        super().__init__()

        self.project = nn.Sequential(
            nn.Linear(in_size, hidden_size),
            nn.Tanh(),
            nn.Linear(hidden_size, 1, bias=False),
        )

    def forward(self, z):
        w = self.project(z).mean(0)
        beta = torch.softmax(w, dim=0)
        beta = beta.expand((z.shape[0],) + beta.shape)

        return (beta * z).sum(1)


class HAN(nn.Module):
    def __init__(
        self,
        num_meta_paths,
        in_size,
        out_size,
        hidden_size=8,
        num_heads=8,
        dropout=0.6,
    ):
        super().__init__()

        self.gat_layers = nn.ModuleList()
        for _ in range(num_meta_paths):
            self.gat_layers.append(
                GATConv(in_size, hidden_size, num_heads, dropout)
            )

        in_size = hidden_size * num_heads
        self.semantic_attention = SemanticAttention(in_size)
        self.predict = nn.Linear(in_size, out_size)

    def forward(self, A_list, X):
        meta_path_Z_list = []
        for i, A in enumerate(A_list):
            meta_path_Z_list.append(self.gat_layers[i](A, X).flatten(1))

        # (num_nodes, num_meta_paths, hidden_size * num_heads)
        meta_path_Z = torch.stack(meta_path_Z_list, dim=1)

        Z = self.semantic_attention(meta_path_Z)
        Z = self.predict(Z)

        return Z


def evaluate(label, val_idx, test_idx, pred):
    # Compute accuracy on validation/test set.
    val_acc = (pred[val_idx] == label[val_idx]).float().mean()
    test_acc = (pred[test_idx] == label[test_idx]).float().mean()
    return val_acc, test_acc


def train(model, data, A_list, X, label):
    dev = X.device
    train_idx = torch.from_numpy(data["train_idx"]).long().squeeze(0).to(dev)
    val_idx = torch.from_numpy(data["val_idx"]).long().squeeze(0).to(dev)
    test_idx = torch.from_numpy(data["test_idx"]).long().squeeze(0).to(dev)
    optimizer = Adam(model.parameters(), lr=0.005, weight_decay=0.001)

    for epoch in range(70):
        # Forward.
        model.train()
        logits = model(A_list, X)

        # Compute loss with nodes in training set.
        loss = F.cross_entropy(logits[train_idx], label[train_idx])

        # Backward.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Compute prediction.
        model.eval()
        logits = model(A_list, X)
        pred = logits.argmax(dim=1)

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(label, val_idx, test_idx, pred)
        print(
            f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test"
            f" acc: {test_acc:.3f}"
        )


if __name__ == "__main__":
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # (TODO): Move the logic to a built-in dataset.
    # Load the data.
    url = "dataset/ACM3025.pkl"
    data_path = get_download_dir() + "/ACM3025.pkl"
    download(_get_dgl_url(url), path=data_path)

    with open(data_path, "rb") as f:
        data = pickle.load(f)

    # Create sparse adjacency matrices corresponding to two meta paths.
    # Self-loops already added.
    PAP_dst, PAP_src = data["PAP"].nonzero()
    PAP_indices = torch.stack(
        [torch.from_numpy(PAP_src).long(), torch.from_numpy(PAP_dst).long()]
    ).to(dev)
    PAP_A = dglsp.spmatrix(PAP_indices)

    PLP_dst, PLP_src = data["PLP"].nonzero()
    PLP_indices = torch.stack(
        [torch.from_numpy(PLP_src).long(), torch.from_numpy(PLP_src).long()]
    ).to(dev)
    PLP_A = dglsp.spmatrix(PLP_indices)
    A_list = [PAP_A, PLP_A]

    # Create HAN model.
    X = torch.from_numpy(data["feature"].todense()).float().to(dev)
    label = torch.from_numpy(data["label"].todense())
    out_size = label.shape[1]
    label = label.nonzero()[:, 1].to(dev)
    in_size = X.shape[1]
    model = HAN(len(A_list), in_size, out_size).to(dev)

    # Kick off training.
    train(model, data, A_list, X, label)