binary_reduce_sum.cu 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/cuda/binary_reduce_sum.cu
 * \brief CUDA kernels for binary reduce sum
 */
#include <dgl/runtime/device_api.h>

#include "../../runtime/cuda/cuda_common.h"
#include "./binary_reduce_impl.cuh"
#include "./backward_binary_reduce_impl.cuh"
#include "../utils.h"
12
#include "../csr_interface.h"
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

using minigun::advance::RuntimeConfig;
using Csr = minigun::Csr<int32_t>;

namespace dgl {
namespace kernel {
namespace cuda {
// specialization for cusparse

template <typename DType>
cusparseStatus_t Xcsrmm2(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const DType* alpha, const cusparseMatDescr_t descrA,
    const DType* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const DType* B, int ldb, const DType* beta, DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUSPARSE_STATUS_EXECUTION_FAILED;
}

template <>
cusparseStatus_t Xcsrmm2<float>(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const float* alpha, const cusparseMatDescr_t descrA,
    const float* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const float* B, int ldb, const float* beta, float* C, int ldc) {
  return cusparseScsrmm2(handle, transA, transB, m, n, k, nnz,
      alpha, descrA, csrValA, csrRowPtrA, csrColIndA,
      B, ldb, beta, C, ldc);
}

template <>
cusparseStatus_t Xcsrmm2<double>(cusparseHandle_t handle, cusparseOperation_t transA,
    cusparseOperation_t transB, int m, int n, int k, int nnz,
    const double* alpha, const cusparseMatDescr_t descrA,
    const double* csrValA, const int* csrRowPtrA, const int* csrColIndA,
    const double* B, int ldb, const double* beta, double* C, int ldc) {
  return cusparseDcsrmm2(handle, transA, transB, m, n, k, nnz,
      alpha, descrA, csrValA, csrRowPtrA, csrColIndA,
      B, ldb, beta, C, ldc);
}

template <typename DType>
cublasStatus_t Xgeam(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const DType* alpha, const DType* A, int lda,
    const DType* beta, const DType* B, int ldb,
    DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUBLAS_STATUS_EXECUTION_FAILED;
}

template <>
cublasStatus_t Xgeam<float>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const float* alpha, const float* A, int lda,
    const float* beta, const float* B, int ldb,
    float* C, int ldc) {
  return cublasSgeam(handle, transa, transb, m, n, alpha, A, lda,
      beta, B, ldb, C, ldc);
}

template <>
cublasStatus_t Xgeam<double>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n,
    const double* alpha, const double* A, int lda,
    const double* beta, const double* B, int ldb,
    double* C, int ldc) {
  return cublasDgeam(handle, transa, transb, m, n, alpha, A, lda,
      beta, B, ldb, C, ldc);
}

template <typename DType>
void CusparseCsrmm2(
    const RuntimeConfig& rtcfg,
    const Csr& csr,
    const DType* B_data, DType* C_data,
    int out_size, int x_length) {
  // We use csrmm2 to perform following operation:
  // C = A x B, where A is a sparse matrix in csr format, B is the dense matrix for node
  // feature tensor. However, since cusparse only supports column-major, while our tensor
  // is stored in row-major, the actual computation is:
  // C = trans(A x trans(B)).
  // Currently, we use cublasXgeam to implement transposition and allocate intermediate
  // workspace memory for this.
  // TODO(minjie): The given CSR could potentially represent a bipartite graph (e.g. in the
  //   case of nodeflow). Currently, we don't have bipartite graph support. Here is a small
  //   hack. In the python side, we create a CSR that includes both the source and destination
  //   nodes in the bipartite graph (so it is still square matrix). Here, when multiplying
  //   this sparse matrix, we specify the number of rows (the `m` here) to be equal to the
  //   number of rows of the output tensor (i.e, the `out_size`).
  //   In the future, we should make sure the number of rows of the given csr is equal
  //   to out_size (a.k.a the given csr is a rectangle matrix).
  const int m = out_size;
  const int k = csr.row_offsets.length - 1;
  const int n = x_length;
  const int nnz = csr.column_indices.length;
  const DType alpha = 1.0;
  const DType beta = 0.0;
  // device
  auto device = runtime::DeviceAPI::Get(rtcfg.ctx);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  // allocate cusparse handle if needed
  if (!thr_entry->cusparse_handle) {
    CUSPARSE_CALL(cusparseCreate(&(thr_entry->cusparse_handle)));
  }
  CUSPARSE_CALL(cusparseSetStream(thr_entry->cusparse_handle, rtcfg.stream));
  // allocate matrix for temporary transposed output
  DType* trans_out = static_cast<DType*>(device->AllocWorkspace(rtcfg.ctx, m * n * sizeof(DType)));
  // all one data array
  DType* valptr = static_cast<DType*>(device->AllocWorkspace(rtcfg.ctx, nnz * sizeof(DType)));
  utils::Fill<kDLGPU>(rtcfg.ctx, valptr, nnz, static_cast<DType>(1.));
  cusparseMatDescr_t descr;
  CUSPARSE_CALL(cusparseCreateMatDescr(&descr));
  CUSPARSE_CALL(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL));
  CUSPARSE_CALL(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO));
  CUSPARSE_CALL(Xcsrmm2<DType>(
      thr_entry->cusparse_handle,
      CUSPARSE_OPERATION_NON_TRANSPOSE,
      CUSPARSE_OPERATION_TRANSPOSE,
      m, n, k, nnz, &alpha,
      descr, valptr, csr.row_offsets.data, csr.column_indices.data,
      B_data, n, &beta, trans_out, m));
  device->FreeWorkspace(rtcfg.ctx, valptr);
  // transpose the output matrix
  if (!thr_entry->cublas_handle) {
    CUBLAS_CALL(cublasCreate(&(thr_entry->cublas_handle)));
  }
  CUBLAS_CALL(cublasSetStream(thr_entry->cublas_handle, rtcfg.stream));
  CUBLAS_CALL(Xgeam<DType>(
      thr_entry->cublas_handle,
      CUBLAS_OP_T,
      CUBLAS_OP_N,
      n, m,
      &alpha, trans_out, m,
      &beta, nullptr, n,
      C_data, n));
  device->FreeWorkspace(rtcfg.ctx, trans_out);
}

// forward

template <typename DType>
void FallbackCallBinaryReduce(
    const RuntimeConfig& rtcfg,
157
    const CSRWrapper& graph,
158
159
160
161
162
163
164
165
166
167
168
169
    GData<int32_t, DType>* gdata) {
  constexpr int XPU = kDLGPU;
  typedef int32_t Idx;
  typedef SelectSrc LeftSelector;
  typedef SelectNone RightSelector;
  typedef BinaryUseLhs<DType> BinaryOp;
  typedef ReduceSum<kDLGPU, DType> Reducer;
  typedef cuda::FunctorsTempl<Idx, DType, LeftSelector,
                        RightSelector, BinaryOp, Reducer>
          Functors;
  typedef cuda::BinaryReduce<Idx, DType, Functors> UDF;
  // csr
170
171
  auto outcsr = graph.GetOutCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(outcsr.indptr, outcsr.indices);
172
173
174
175
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge && gdata->lhs_mapping == nullptr) {
176
    gdata->lhs_mapping = static_cast<Idx*>(outcsr.data->data);
177
178
  }
  if (RightSelector::target == binary_op::kEdge && gdata->rhs_mapping == nullptr) {
179
    gdata->rhs_mapping = static_cast<Idx*>(outcsr.data->data);
180
181
182
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
183
    gdata->out_mapping = static_cast<Idx*>(outcsr.data->data);
184
185
186
187
188
189
190
191
192
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cuda::AdvanceConfig, GData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

template <typename DType>
void FallbackCallBackwardBinaryReduce(
    const RuntimeConfig& rtcfg,
193
    const CSRWrapper& graph,
194
195
196
197
198
199
200
201
202
203
204
205
    BackwardGData<int32_t, DType>* gdata) {
  constexpr int XPU = kDLGPU;
  constexpr int Mode = binary_op::kGradLhs;
  typedef int32_t Idx;
  typedef SelectSrc LeftSelector;
  typedef SelectNone RightSelector;
  typedef BinaryUseLhs<DType> BinaryOp;
  typedef ReduceSum<kDLGPU, DType> Reducer;
  // For backward computation, we use reverse csr and switch dst and src.
  // This benefits the most common src_op_edge or copy_src case, because the
  // gradients of src are now aggregated into destination buffer to reduce
  // competition of atomic add.
206
207
  auto incsr = graph.GetInCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(incsr.indptr, incsr.indices);
208
209
210
211
212
213
214
215
216
217
  typedef cuda::BackwardFunctorsTempl<Idx, DType,
          typename SwitchSrcDst<LeftSelector>::Type,
          typename SwitchSrcDst<RightSelector>::Type,
          BinaryOp, Reducer> Functors;
  typedef cuda::BackwardBinaryReduce<Mode, Idx, DType, Functors> UDF;
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge
      && gdata->lhs_mapping == nullptr) {
218
    gdata->lhs_mapping = static_cast<Idx*>(incsr.data->data);
219
220
221
  }
  if (RightSelector::target == binary_op::kEdge
      && gdata->rhs_mapping == nullptr) {
222
    gdata->rhs_mapping = static_cast<Idx*>(incsr.data->data);
223
224
225
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
226
    gdata->out_mapping = static_cast<Idx*>(incsr.data->data);
227
228
229
230
231
232
233
234
235
236
237
238
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cuda::AdvanceConfig, BackwardGData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

}  // namespace cuda

template <>
void CallBinaryReduce<kDLGPU, int32_t, float, SelectSrc, SelectNone,
                      BinaryUseLhs<float>, ReduceSum<kDLGPU, float>>(
    const RuntimeConfig& rtcfg,
239
    const CSRWrapper& graph,
240
241
242
243
244
    GData<int32_t, float>* gdata) {
  if (gdata->lhs_mapping || gdata->rhs_mapping || gdata->out_mapping) {
    cuda::FallbackCallBinaryReduce<float>(rtcfg, graph, gdata);
  } else {
    // cusparse use rev csr for csrmm
245
246
    auto incsr = graph.GetInCSRMatrix();
    Csr csr = utils::CreateCsr<int32_t>(incsr.indptr, incsr.indices);
247
248
249
250
251
252
253
254
255
    cuda::CusparseCsrmm2(rtcfg, csr, gdata->lhs_data, gdata->out_data,
        gdata->out_size, gdata->x_length);
  }
}

template <>
void CallBinaryReduce<kDLGPU, int32_t, double, SelectSrc, SelectNone,
                      BinaryUseLhs<double>, ReduceSum<kDLGPU, double>>(
    const RuntimeConfig& rtcfg,
256
    const CSRWrapper& graph,
257
258
259
260
261
    GData<int32_t, double>* gdata) {
  if (gdata->lhs_mapping || gdata->rhs_mapping || gdata->out_mapping) {
    cuda::FallbackCallBinaryReduce<double>(rtcfg, graph, gdata);
  } else {
    // cusparse use rev csr for csrmm
262
263
    auto incsr = graph.GetInCSRMatrix();
    Csr csr = utils::CreateCsr<int32_t>(incsr.indptr, incsr.indices);
264
265
266
267
268
269
270
271
272
273
274
275
    cuda::CusparseCsrmm2(rtcfg, csr, gdata->lhs_data, gdata->out_data,
        gdata->out_size, gdata->x_length);
  }
}

// backward

template <>
void CallBackwardBinaryReduce<kDLGPU, binary_op::kGradLhs, int32_t, float,
                              SelectSrc, SelectNone,
                              BinaryUseLhs<float>, ReduceSum<kDLGPU, float>>(
    const RuntimeConfig& rtcfg,
276
    const CSRWrapper& graph,
277
278
279
280
    BackwardGData<int32_t, float>* gdata) {
  if (gdata->lhs_mapping || gdata->rhs_mapping || gdata->out_mapping) {
    cuda::FallbackCallBackwardBinaryReduce<float>(rtcfg, graph, gdata);
  } else {
281
282
    auto outcsr = graph.GetOutCSRMatrix();
    Csr csr = utils::CreateCsr<int32_t>(outcsr.indptr, outcsr.indices);
283
284
285
286
287
288
289
290
291
292
    cuda::CusparseCsrmm2(rtcfg, csr, gdata->grad_out_data, gdata->grad_lhs_data,
        gdata->out_size, gdata->x_length);
  }
}

template <>
void CallBackwardBinaryReduce<kDLGPU, binary_op::kGradLhs, int32_t, double,
                              SelectSrc, SelectNone,
                              BinaryUseLhs<double>, ReduceSum<kDLGPU, double>>(
    const RuntimeConfig& rtcfg,
293
    const CSRWrapper& graph,
294
295
296
297
    BackwardGData<int32_t, double>* gdata) {
  if (gdata->lhs_mapping || gdata->rhs_mapping || gdata->out_mapping) {
    cuda::FallbackCallBackwardBinaryReduce<double>(rtcfg, graph, gdata);
  } else {
298
299
    auto outcsr = graph.GetOutCSRMatrix();
    Csr csr = utils::CreateCsr<int32_t>(outcsr.indptr, outcsr.indices);
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    cuda::CusparseCsrmm2(rtcfg, csr, gdata->grad_out_data, gdata->grad_lhs_data,
        gdata->out_size, gdata->x_length);
  }
}

// generate definitions

#define REDUCER ReduceSum
#define XPU kDLGPU
#define IDX int32_t

EVAL(GEN_DTYPE, GEN_OP_TARGET, GEN_DEFINE);
EVAL(GEN_BACKWARD_MODE, GEN_DTYPE, GEN_OP_TARGET, GEN_BACKWARD_DEFINE);

}  // namespace kernel
}  // namespace dgl