"vscode:/vscode.git/clone" did not exist on "5bfafdfcb4703f39e8d135ce435365f53b4b4fbe"
train_ppi.py 6.48 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
"""
Graph Attention Networks (PPI Dataset) in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
Compared with the original paper, this code implements
early stopping.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import numpy as np
import torch
import dgl
import torch.nn.functional as F
import argparse
from sklearn.metrics import f1_score
from gat import GAT
Xiangkun Hu's avatar
Xiangkun Hu committed
20
from dgl.data.ppi import PPIDataset
21
22
from torch.utils.data import DataLoader

Xiangkun Hu's avatar
Xiangkun Hu committed
23
def collate(graphs):
24
    graph = dgl.batch(graphs)
Xiangkun Hu's avatar
Xiangkun Hu committed
25
    return graph
26
27
28
29
30
31
32
33
34

def evaluate(feats, model, subgraph, labels, loss_fcn):
    with torch.no_grad():
        model.eval()
        model.g = subgraph
        for layer in model.gat_layers:
            layer.g = subgraph
        output = model(feats.float())
        loss_data = loss_fcn(output, labels.float())
Mufei Li's avatar
Mufei Li committed
35
        predict = np.where(output.data.cpu().numpy() >= 0., 1, 0)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        score = f1_score(labels.data.cpu().numpy(),
                         predict, average='micro')
        return score, loss_data.item()
        
def main(args):
    if args.gpu<0:
        device = torch.device("cpu")
    else:
        device = torch.device("cuda:" + str(args.gpu))

    batch_size = args.batch_size
    cur_step = 0
    patience = args.patience
    best_score = -1
    best_loss = 10000
    # define loss function
    loss_fcn = torch.nn.BCEWithLogitsLoss()
    # create the dataset
Xiangkun Hu's avatar
Xiangkun Hu committed
54
55
56
    train_dataset = PPIDataset(mode='train')
    valid_dataset = PPIDataset(mode='valid')
    test_dataset = PPIDataset(mode='test')
57
58
59
    train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate)
    valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate)
    test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate)
Xiangkun Hu's avatar
Xiangkun Hu committed
60
61
62
    g = train_dataset[0]
    n_classes = train_dataset.num_labels
    num_feats = g.ndata['feat'].shape[1]
63
    g = g.to(device)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
    # define the model
    model = GAT(g,
                args.num_layers,
                num_feats,
                args.num_hidden,
                n_classes,
                heads,
                F.elu,
                args.in_drop,
                args.attn_drop,
                args.alpha,
                args.residual)
    # define the optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    model = model.to(device)
    for epoch in range(args.epochs):
        model.train()
        loss_list = []
Xiangkun Hu's avatar
Xiangkun Hu committed
83
        for batch, subgraph in enumerate(train_dataloader):
84
            subgraph = subgraph.to(device)
85
86
87
            model.g = subgraph
            for layer in model.gat_layers:
                layer.g = subgraph
Xiangkun Hu's avatar
Xiangkun Hu committed
88
89
            logits = model(subgraph.ndata['feat'].float())
            loss = loss_fcn(logits, subgraph.ndata['label'])
90
91
92
93
94
95
96
97
98
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            loss_list.append(loss.item())
        loss_data = np.array(loss_list).mean()
        print("Epoch {:05d} | Loss: {:.4f}".format(epoch + 1, loss_data))
        if epoch % 5 == 0:
            score_list = []
            val_loss_list = []
99
            for batch, subgraph in enumerate(valid_dataloader):
100
                subgraph = subgraph.to(device)
101
                score, val_loss = evaluate(subgraph.ndata['feat'], model, subgraph, subgraph.ndata['label'], loss_fcn)
102
103
104
105
                score_list.append(score)
                val_loss_list.append(val_loss)
            mean_score = np.array(score_list).mean()
            mean_val_loss = np.array(val_loss_list).mean()
Mufei Li's avatar
Mufei Li committed
106
            print("Val F1-Score: {:.4f} ".format(mean_score))
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            # early stop
            if mean_score > best_score or best_loss > mean_val_loss:
                if mean_score > best_score and best_loss > mean_val_loss:
                    val_early_loss = mean_val_loss
                    val_early_score = mean_score
                best_score = np.max((mean_score, best_score))
                best_loss = np.min((best_loss, mean_val_loss))
                cur_step = 0
            else:
                cur_step += 1
                if cur_step == patience:
                    break
    test_score_list = []
    for batch, test_data in enumerate(test_dataloader):
        subgraph, feats, labels = test_data
122
        subgraph = subgraph.to(device)
123
124
125
        feats = feats.to(device)
        labels = labels.to(device)
        test_score_list.append(evaluate(feats, model, subgraph, labels.float(), loss_fcn)[0])
Mufei Li's avatar
Mufei Li committed
126
    print("Test F1-Score: {:.4f}".format(np.array(test_score_list).mean()))
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GAT')
    parser.add_argument("--gpu", type=int, default=-1,
                        help="which GPU to use. Set -1 to use CPU.")
    parser.add_argument("--epochs", type=int, default=400,
                        help="number of training epochs")
    parser.add_argument("--num-heads", type=int, default=4,
                        help="number of hidden attention heads")
    parser.add_argument("--num-out-heads", type=int, default=6,
                        help="number of output attention heads")
    parser.add_argument("--num-layers", type=int, default=2,
                        help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=256,
                        help="number of hidden units")
    parser.add_argument("--residual", action="store_true", default=True,
                        help="use residual connection")
    parser.add_argument("--in-drop", type=float, default=0,
                        help="input feature dropout")
    parser.add_argument("--attn-drop", type=float, default=0,
                        help="attention dropout")
    parser.add_argument("--lr", type=float, default=0.005,
                        help="learning rate")
    parser.add_argument('--weight-decay', type=float, default=0,
                        help="weight decay")
    parser.add_argument('--alpha', type=float, default=0.2,
                        help="the negative slop of leaky relu")
    parser.add_argument('--batch-size', type=int, default=2,
                        help="batch size used for training, validation and test")
    parser.add_argument('--patience', type=int, default=10,
                        help="used for early stop")
    args = parser.parse_args()
    print(args)

    main(args)