sgc.py 3.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
"""
This code was modified from the GCN implementation in DGL examples.
Simplifying Graph Convolutional Networks
Paper: https://arxiv.org/abs/1902.07153
Code: https://github.com/Tiiiger/SGC
SGC implementation in DGL.
"""
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import nd, gluon
from mxnet.gluon import nn
13
14
15
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
16
17
18
19
20
21
22
23
24
25
from dgl.nn.mxnet.conv import SGConv


def evaluate(model, g, features, labels, mask):
    pred = model(g, features).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()

def main(args):
    # load and preprocess dataset
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))

    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.to(ctx)
43

44
45
46
47
48
    features = g.ndata['feat']
    labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              train_mask.sum().asscalar(),
              val_mask.sum().asscalar(),
              test_mask.sum().asscalar()))

    # add self loop
64
65
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    # create SGC model
    model = SGConv(in_feats,
                   n_classes,
                   k=2,
                   cached=True,
                   bias=args.bias)

    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(g, features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, g, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, g, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='SGC')
    register_data_args(parser)
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=0.2,
            help="learning rate")
    parser.add_argument("--bias", action='store_true', default=False,
            help="flag to use bias")
    parser.add_argument("--n-epochs", type=int, default=100,
            help="number of training epochs")
    parser.add_argument("--weight-decay", type=float, default=5e-6,
            help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)