2_capsule.py 10 KB
Newer Older
1
2
3
"""
.. _model-capsule:

4
Capsule Network
5
6
===========================

7
**Author**: Jinjing Zhou, `Jake Zhao <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang, Jinyang Li
8

9
10
In this tutorial, you learn how to describe one of the more classical models in terms of graphs. The approach
offers a different perspective. The tutorial describes how to implement a Capsule model for the
11
`capsule network <http://arxiv.org/abs/1710.09829>`__.
12
13
14
15
16
17
18
19

.. warning::

    The tutorial aims at gaining insights into the paper, with code as a mean
    of explanation. The implementation thus is NOT optimized for running
    efficiency. For recommended implementation, please refer to the `official
    examples <https://github.com/dmlc/dgl/tree/master/examples>`_.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
#######################################################################################
# Key ideas of Capsule
# --------------------
#
# The Capsule model offers two key ideas: Richer representation and dynamic routing.
#
# **Richer representation** -- In classic convolutional networks, a scalar
# value represents the activation of a given feature. By contrast, a
# capsule outputs a vector. The vector's length represents the probability
# of a feature being present. The vector's orientation represents the
# various properties of the feature (such as pose, deformation, texture
# etc.).
#
# |image0|
#
# **Dynamic routing** -- The output of a capsule is sent to
# certain parents in the layer above based on how well the capsule's
# prediction agrees with that of a parent. Such dynamic
# routing-by-agreement generalizes the static routing of max-pooling.
#
# During training, routing is accomplished iteratively. Each iteration adjusts
# routing weights between capsules based on their observed agreements.
# It's a manner similar to a k-means algorithm or `competitive
# learning <https://en.wikipedia.org/wiki/Competitive_learning>`__.
#
# In this tutorial, you see how a capsule's dynamic routing algorithm can be
# naturally expressed as a graph algorithm. The implementation is adapted
# from `Cedric
# Chee <https://github.com/cedrickchee/capsule-net-pytorch>`__, replacing
# only the routing layer. This version achieves similar speed and accuracy.
#
# Model implementation
# ----------------------
# Step 1: Setup and graph initialization
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The connectivity between two layers of capsules form a directed,
# bipartite graph, as shown in the Figure below.
#
# |image1|
#
# Each node :math:`j` is associated with feature :math:`v_j`,
# representing its capsule’s output. Each edge is associated with
# features :math:`b_{ij}` and :math:`\hat{u}_{j|i}`. :math:`b_{ij}`
# determines routing weights, and :math:`\hat{u}_{j|i}` represents the
# prediction of capsule :math:`i` for :math:`j`.
#
# Here's how we set up the graph and initialize node and edge features.

import os

os.environ["DGLBACKEND"] = "pytorch"
import dgl
import matplotlib.pyplot as plt
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F


def init_graph(in_nodes, out_nodes, f_size):
    u = np.repeat(np.arange(in_nodes), out_nodes)
    v = np.tile(np.arange(in_nodes, in_nodes + out_nodes), in_nodes)
    g = dgl.DGLGraph((u, v))
    # init states
    g.ndata["v"] = th.zeros(in_nodes + out_nodes, f_size)
    g.edata["b"] = th.zeros(in_nodes * out_nodes, 1)
    return g


#########################################################################################
# Step 2: Define message passing functions
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# This is the pseudocode for Capsule's routing algorithm.
#
# |image2|
# Implement pseudocode lines 4-7 in the class `DGLRoutingLayer` as the following steps:
#
# 1. Calculate coupling coefficients.
#
#    -  Coefficients are the softmax over all out-edge of in-capsules.
#       :math:`\textbf{c}_{i,j} = \text{softmax}(\textbf{b}_{i,j})`.
#
# 2. Calculate weighted sum over all in-capsules.
#
#    -  Output of a capsule is equal to the weighted sum of its in-capsules
#       :math:`s_j=\sum_i c_{ij}\hat{u}_{j|i}`
#
# 3. Squash outputs.
#
#    -  Squash the length of a Capsule's output vector to range (0,1), so it can represent the probability (of some feature being present).
#    -  :math:`v_j=\text{squash}(s_j)=\frac{||s_j||^2}{1+||s_j||^2}\frac{s_j}{||s_j||}`
#
# 4. Update weights by the amount of agreement.
#
#    -  The scalar product :math:`\hat{u}_{j|i}\cdot v_j` can be considered as how well capsule :math:`i` agrees with :math:`j`. It is used to update
#       :math:`b_{ij}=b_{ij}+\hat{u}_{j|i}\cdot v_j`

import dgl.function as fn


class DGLRoutingLayer(nn.Module):
    def __init__(self, in_nodes, out_nodes, f_size):
        super(DGLRoutingLayer, self).__init__()
        self.g = init_graph(in_nodes, out_nodes, f_size)
        self.in_nodes = in_nodes
        self.out_nodes = out_nodes
        self.in_indx = list(range(in_nodes))
        self.out_indx = list(range(in_nodes, in_nodes + out_nodes))

    def forward(self, u_hat, routing_num=1):
        self.g.edata["u_hat"] = u_hat

        for r in range(routing_num):
            # step 1 (line 4): normalize over out edges
            edges_b = self.g.edata["b"].view(self.in_nodes, self.out_nodes)
            self.g.edata["c"] = F.softmax(edges_b, dim=1).view(-1, 1)
            self.g.edata["c u_hat"] = self.g.edata["c"] * self.g.edata["u_hat"]

            # Execute step 1 & 2
            self.g.update_all(fn.copy_e("c u_hat", "m"), fn.sum("m", "s"))

            # step 3 (line 6)
            self.g.nodes[self.out_indx].data["v"] = self.squash(
                self.g.nodes[self.out_indx].data["s"], dim=1
            )

            # step 4 (line 7)
            v = th.cat(
                [self.g.nodes[self.out_indx].data["v"]] * self.in_nodes, dim=0
            )
            self.g.edata["b"] = self.g.edata["b"] + (
                self.g.edata["u_hat"] * v
            ).sum(dim=1, keepdim=True)

    @staticmethod
    def squash(s, dim=1):
        sq = th.sum(s**2, dim=dim, keepdim=True)
        s_norm = th.sqrt(sq)
        s = (sq / (1.0 + sq)) * (s / s_norm)
        return s


############################################################################################################
# Step 3: Testing
# ~~~~~~~~~~~~~~~
#
# Make a simple 20x10 capsule layer.
in_nodes = 20
out_nodes = 10
f_size = 4
u_hat = th.randn(in_nodes * out_nodes, f_size)
routing = DGLRoutingLayer(in_nodes, out_nodes, f_size)

############################################################################################################
# You can visualize a Capsule network's behavior by monitoring the entropy
# of coupling coefficients. They should start high and then drop, as the
# weights gradually concentrate on fewer edges.
entropy_list = []
dist_list = []

for i in range(10):
    routing(u_hat)
    dist_matrix = routing.g.edata["c"].view(in_nodes, out_nodes)
    entropy = (-dist_matrix * th.log(dist_matrix)).sum(dim=1)
    entropy_list.append(entropy.data.numpy())
    dist_list.append(dist_matrix.data.numpy())
stds = np.std(entropy_list, axis=1)
means = np.mean(entropy_list, axis=1)
plt.errorbar(np.arange(len(entropy_list)), means, stds, marker="o")
plt.ylabel("Entropy of Weight Distribution")
plt.xlabel("Number of Routing")
plt.xticks(np.arange(len(entropy_list)))
plt.close()
############################################################################################################
# |image3|
#
# Alternatively, we can also watch the evolution of histograms.

import matplotlib.animation as animation
import seaborn as sns

fig = plt.figure(dpi=150)
fig.clf()
ax = fig.subplots()


def dist_animate(i):
    ax.cla()
    sns.distplot(dist_list[i].reshape(-1), kde=False, ax=ax)
    ax.set_xlabel("Weight Distribution Histogram")
    ax.set_title("Routing: %d" % (i))


ani = animation.FuncAnimation(
    fig, dist_animate, frames=len(entropy_list), interval=500
)
plt.close()

############################################################################################################
# |image4|
#
# You can monitor the how lower-level Capsules gradually attach to one of the
# higher level ones.
import networkx as nx
from networkx.algorithms import bipartite

g = routing.g.to_networkx()
X, Y = bipartite.sets(g)
height_in = 10
height_out = height_in * 0.8
height_in_y = np.linspace(0, height_in, in_nodes)
height_out_y = np.linspace((height_in - height_out) / 2, height_out, out_nodes)
pos = dict()

fig2 = plt.figure(figsize=(8, 3), dpi=150)
fig2.clf()
ax = fig2.subplots()
pos.update(
    (n, (i, 1)) for i, n in zip(height_in_y, X)
)  # put nodes from X at x=1
pos.update(
    (n, (i, 2)) for i, n in zip(height_out_y, Y)
)  # put nodes from Y at x=2


def weight_animate(i):
    ax.cla()
    ax.axis("off")
    ax.set_title("Routing: %d  " % i)
    dm = dist_list[i]
    nx.draw_networkx_nodes(
        g, pos, nodelist=range(in_nodes), node_color="r", node_size=100, ax=ax
    )
    nx.draw_networkx_nodes(
        g,
        pos,
        nodelist=range(in_nodes, in_nodes + out_nodes),
        node_color="b",
        node_size=100,
        ax=ax,
    )
    for edge in g.edges():
        nx.draw_networkx_edges(
            g,
            pos,
            edgelist=[edge],
            width=dm[edge[0], edge[1] - in_nodes] * 1.5,
            ax=ax,
        )


ani2 = animation.FuncAnimation(
    fig2, weight_animate, frames=len(dist_list), interval=500
)
plt.close()

############################################################################################################
# |image5|
#
# The full code of this visualization is provided on
# `GitHub <https://github.com/dmlc/dgl/blob/master/examples/pytorch/capsule/simple_routing.py>`__. The complete
# code that trains on MNIST is also on `GitHub <https://github.com/dmlc/dgl/tree/tutorial/examples/pytorch/capsule>`__.
#
# .. |image0| image:: https://i.imgur.com/55Ovkdh.png
# .. |image1| image:: https://i.imgur.com/9tc6GLl.png
# .. |image2| image:: https://i.imgur.com/mv1W9Rv.png
# .. |image3| image:: https://i.imgur.com/dMvu7p3.png
# .. |image4| image:: https://github.com/VoVAllen/DGL_Capsule/raw/master/routing_dist.gif
# .. |image5| image:: https://github.com/VoVAllen/DGL_Capsule/raw/master/routing_vis.gif