main.py 4.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from modelnet import ModelNet
from model import Model, compute_loss
from dgl.data.utils import download, get_download_dir

from functools import partial
import tqdm
import urllib
import os
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=100)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument('--batch-size', type=int, default=32)
args = parser.parse_args()

num_workers = args.num_workers
batch_size = args.batch_size
data_filename = 'modelnet40-sampled-2048.h5'
local_path = args.dataset_path or os.path.join(get_download_dir(), data_filename)

if not os.path.exists(local_path):
    download('https://s3.us-east-2.amazonaws.com/dgl.ai/dataset/modelnet40-sampled-2048.h5', local_path)

CustomDataLoader = partial(
        DataLoader,
        num_workers=num_workers,
        batch_size=batch_size,
        shuffle=True,
        drop_last=True)

def train(model, opt, scheduler, train_loader, dev):
    scheduler.step()

    model.train()

    total_loss = 0
    num_batches = 0
    total_correct = 0
    count = 0
    with tqdm.tqdm(train_loader, ascii=True) as tq:
        for data, label in tq:
            num_examples = label.shape[0]
            data, label = data.to(dev), label.to(dev).squeeze().long()
            opt.zero_grad()
            logits = model(data)
            loss = compute_loss(logits, label)
            loss.backward()
            opt.step()

            _, preds = logits.max(1)

            num_batches += 1
            count += num_examples
            loss = loss.item()
            correct = (preds == label).sum().item()
            total_loss += loss
            total_correct += correct

            tq.set_postfix({
                'Loss': '%.5f' % loss,
                'AvgLoss': '%.5f' % (total_loss / num_batches),
                'Acc': '%.5f' % (correct / num_examples),
                'AvgAcc': '%.5f' % (total_correct / count)})

def evaluate(model, test_loader, dev):
    model.eval()

    total_correct = 0
    count = 0

    with torch.no_grad():
        with tqdm.tqdm(test_loader, ascii=True) as tq:
            for data, label in tq:
                num_examples = label.shape[0]
                data, label = data.to(dev), label.to(dev).squeeze().long()
                logits = model(data)
                _, preds = logits.max(1)

                correct = (preds == label).sum().item()
                total_correct += correct
                count += num_examples

                tq.set_postfix({
                    'Acc': '%.5f' % (correct / num_examples),
                    'AvgAcc': '%.5f' % (total_correct / count)})

    return total_correct / count


dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = Model(20, [64, 64, 128, 256], [512, 512, 256], 40)
model = model.to(dev)
if args.load_model_path:
    model.load_state_dict(torch.load(args.load_model_path, map_location=dev))

opt = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)

scheduler = optim.lr_scheduler.CosineAnnealingLR(opt, args.num_epochs, eta_min=0.001)

modelnet = ModelNet(local_path, 1024)

train_loader = CustomDataLoader(modelnet.train())
valid_loader = CustomDataLoader(modelnet.valid())
test_loader = CustomDataLoader(modelnet.test())

best_valid_acc = 0
best_test_acc = 0

for epoch in range(args.num_epochs):
    print('Epoch #%d Validating' % epoch)
    valid_acc = evaluate(model, valid_loader, dev)
    test_acc = evaluate(model, test_loader, dev)
    if valid_acc > best_valid_acc:
        best_valid_acc = valid_acc
        best_test_acc = test_acc
        if args.save_model_path:
            torch.save(model.state_dict(), args.save_model_path)
    print('Current validation acc: %.5f (best: %.5f), test acc: %.5f (best: %.5f)' % (
        valid_acc, best_valid_acc, test_acc, best_test_acc))

    train(model, opt, scheduler, train_loader, dev)