array_op_impl.cc 11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/array_op_impl.cc
 * \brief Array operator CPU implementation
 */
#include <dgl/array.h>
#include <numeric>
#include "../arith.h"

namespace dgl {
using runtime::NDArray;
namespace aten {
namespace impl {

///////////////////////////// AsNumBits /////////////////////////////

template <DLDeviceType XPU, typename IdType>
IdArray AsNumBits(IdArray arr, uint8_t bits) {
  CHECK(bits == 32 || bits == 64) << "invalid number of integer bits";
  if (sizeof(IdType) * 8 == bits) {
    return arr;
  }
  const int64_t len = arr->shape[0];
  IdArray ret = NewIdArray(len, arr->ctx, bits);
  const IdType* arr_data = static_cast<IdType*>(arr->data);
  if (bits == 32) {
    int32_t* ret_data = static_cast<int32_t*>(ret->data);
    for (int64_t i = 0; i < len; ++i) {
      ret_data[i] = arr_data[i];
    }
  } else {
    int64_t* ret_data = static_cast<int64_t*>(ret->data);
    for (int64_t i = 0; i < len; ++i) {
      ret_data[i] = arr_data[i];
    }
  }
  return ret;
}

template IdArray AsNumBits<kDLCPU, int32_t>(IdArray arr, uint8_t bits);
template IdArray AsNumBits<kDLCPU, int64_t>(IdArray arr, uint8_t bits);

///////////////////////////// BinaryElewise /////////////////////////////

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdArray rhs) {
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  const IdType* rhs_data = static_cast<IdType*>(rhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
51
52
  // TODO(minjie): we should split the loop into segments for better cache locality.
#pragma omp parallel for
53
54
55
56
57
58
59
60
61
62
  for (int64_t i = 0; i < lhs->shape[0]; ++i) {
    ret_data[i] = Op::Call(lhs_data[i], rhs_data[i]);
  }
  return ret;
}

template IdArray BinaryElewise<kDLCPU, int32_t, arith::Add>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Sub>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Mul>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Div>(IdArray lhs, IdArray rhs);
63
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Mod>(IdArray lhs, IdArray rhs);
64
template IdArray BinaryElewise<kDLCPU, int32_t, arith::GT>(IdArray lhs, IdArray rhs);
65
template IdArray BinaryElewise<kDLCPU, int32_t, arith::LT>(IdArray lhs, IdArray rhs);
66
67
68
69
template IdArray BinaryElewise<kDLCPU, int32_t, arith::GE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::LE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::EQ>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::NE>(IdArray lhs, IdArray rhs);
70
71
72
73
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Add>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Sub>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Mul>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Div>(IdArray lhs, IdArray rhs);
74
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Mod>(IdArray lhs, IdArray rhs);
75
template IdArray BinaryElewise<kDLCPU, int64_t, arith::GT>(IdArray lhs, IdArray rhs);
76
template IdArray BinaryElewise<kDLCPU, int64_t, arith::LT>(IdArray lhs, IdArray rhs);
77
78
79
80
template IdArray BinaryElewise<kDLCPU, int64_t, arith::GE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::LE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::EQ>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::NE>(IdArray lhs, IdArray rhs);
81
82
83
84
85
86

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdType rhs) {
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
87
88
  // TODO(minjie): we should split the loop into segments for better cache locality.
#pragma omp parallel for
89
90
91
92
93
94
95
96
97
98
  for (int64_t i = 0; i < lhs->shape[0]; ++i) {
    ret_data[i] = Op::Call(lhs_data[i], rhs);
  }
  return ret;
}

template IdArray BinaryElewise<kDLCPU, int32_t, arith::Add>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Sub>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Mul>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Div>(IdArray lhs, int32_t rhs);
99
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Mod>(IdArray lhs, int32_t rhs);
100
template IdArray BinaryElewise<kDLCPU, int32_t, arith::GT>(IdArray lhs, int32_t rhs);
101
template IdArray BinaryElewise<kDLCPU, int32_t, arith::LT>(IdArray lhs, int32_t rhs);
102
103
104
105
template IdArray BinaryElewise<kDLCPU, int32_t, arith::GE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::LE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::EQ>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::NE>(IdArray lhs, int32_t rhs);
106
107
108
109
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Add>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Sub>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Mul>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Div>(IdArray lhs, int64_t rhs);
110
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Mod>(IdArray lhs, int64_t rhs);
111
template IdArray BinaryElewise<kDLCPU, int64_t, arith::GT>(IdArray lhs, int64_t rhs);
112
template IdArray BinaryElewise<kDLCPU, int64_t, arith::LT>(IdArray lhs, int64_t rhs);
113
114
115
116
template IdArray BinaryElewise<kDLCPU, int64_t, arith::GE>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::LE>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::EQ>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::NE>(IdArray lhs, int64_t rhs);
117
118
119
120
121
122

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdType lhs, IdArray rhs) {
  IdArray ret = NewIdArray(rhs->shape[0], rhs->ctx, rhs->dtype.bits);
  const IdType* rhs_data = static_cast<IdType*>(rhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
123
124
  // TODO(minjie): we should split the loop into segments for better cache locality.
#pragma omp parallel for
125
126
127
128
129
130
131
132
133
134
  for (int64_t i = 0; i < rhs->shape[0]; ++i) {
    ret_data[i] = Op::Call(lhs, rhs_data[i]);
  }
  return ret;
}

template IdArray BinaryElewise<kDLCPU, int32_t, arith::Add>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Sub>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Mul>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Div>(int32_t lhs, IdArray rhs);
135
template IdArray BinaryElewise<kDLCPU, int32_t, arith::Mod>(int32_t lhs, IdArray rhs);
136
template IdArray BinaryElewise<kDLCPU, int32_t, arith::GT>(int32_t lhs, IdArray rhs);
137
template IdArray BinaryElewise<kDLCPU, int32_t, arith::LT>(int32_t lhs, IdArray rhs);
138
139
140
141
template IdArray BinaryElewise<kDLCPU, int32_t, arith::GE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::LE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::EQ>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int32_t, arith::NE>(int32_t lhs, IdArray rhs);
142
143
144
145
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Add>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Sub>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Mul>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Div>(int64_t lhs, IdArray rhs);
146
template IdArray BinaryElewise<kDLCPU, int64_t, arith::Mod>(int64_t lhs, IdArray rhs);
147
template IdArray BinaryElewise<kDLCPU, int64_t, arith::GT>(int64_t lhs, IdArray rhs);
148
template IdArray BinaryElewise<kDLCPU, int64_t, arith::LT>(int64_t lhs, IdArray rhs);
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
template IdArray BinaryElewise<kDLCPU, int64_t, arith::GE>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::LE>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::EQ>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLCPU, int64_t, arith::NE>(int64_t lhs, IdArray rhs);

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray UnaryElewise(IdArray lhs) {
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  // TODO(minjie): we should split the loop into segments for better cache locality.
#pragma omp parallel for
  for (int64_t i = 0; i < lhs->shape[0]; ++i) {
    ret_data[i] = Op::Call(lhs_data[i]);
  }
  return ret;
}

template IdArray UnaryElewise<kDLCPU, int32_t, arith::Neg>(IdArray lhs);
template IdArray UnaryElewise<kDLCPU, int64_t, arith::Neg>(IdArray lhs);
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

///////////////////////////// Full /////////////////////////////

template <DLDeviceType XPU, typename IdType>
IdArray Full(IdType val, int64_t length, DLContext ctx) {
  IdArray ret = NewIdArray(length, ctx, sizeof(IdType) * 8);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  std::fill(ret_data, ret_data + length, val);
  return ret;
}

template IdArray Full<kDLCPU, int32_t>(int32_t val, int64_t length, DLContext ctx);
template IdArray Full<kDLCPU, int64_t>(int64_t val, int64_t length, DLContext ctx);

///////////////////////////// Range /////////////////////////////

template <DLDeviceType XPU, typename IdType>
IdArray Range(IdType low, IdType high, DLContext ctx) {
  CHECK(high >= low) << "high must be bigger than low";
  IdArray ret = NewIdArray(high - low, ctx, sizeof(IdType) * 8);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  std::iota(ret_data, ret_data + high - low, low);
  return ret;
}

template IdArray Range<kDLCPU, int32_t>(int32_t, int32_t, DLContext);
template IdArray Range<kDLCPU, int64_t>(int64_t, int64_t, DLContext);

///////////////////////////// Relabel_ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
IdArray Relabel_(const std::vector<IdArray>& arrays) {
  // build map & relabel
  IdType newid = 0;
  std::unordered_map<IdType, IdType> oldv2newv;
  for (IdArray arr : arrays) {
    for (int64_t i = 0; i < arr->shape[0]; ++i) {
      const IdType id = static_cast<IdType*>(arr->data)[i];
      if (!oldv2newv.count(id)) {
        oldv2newv[id] = newid++;
      }
      static_cast<IdType*>(arr->data)[i] = oldv2newv[id];
    }
  }
  // map array
214
  IdArray maparr = NewIdArray(newid, DLContext{kDLCPU, 0}, sizeof(IdType) * 8);
215
216
217
218
219
220
221
222
223
224
225
226
227
  IdType* maparr_data = static_cast<IdType*>(maparr->data);
  for (const auto& kv : oldv2newv) {
    maparr_data[kv.second] = kv.first;
  }
  return maparr;
}

template IdArray Relabel_<kDLCPU, int32_t>(const std::vector<IdArray>& arrays);
template IdArray Relabel_<kDLCPU, int64_t>(const std::vector<IdArray>& arrays);

}  // namespace impl
}  // namespace aten
}  // namespace dgl