gcn_trainer.py 9.43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import gluon
from functools import partial
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data


class NodeUpdate(gluon.Block):
    def __init__(self, in_feats, out_feats, activation=None, test=False, concat=False):
        super(NodeUpdate, self).__init__()
        self.dense = gluon.nn.Dense(out_feats, in_units=in_feats)
        self.activation = activation
        self.concat = concat
        self.test = test

    def forward(self, node):
        h = node.data['h']
        if self.test:
            h = h * node.data['norm']
        h = self.dense(h)
        # skip connection
        if self.concat:
            h = mx.nd.concat(h, self.activation(h))
        elif self.activation:
            h = self.activation(h)
        return {'activation': h}


class GCNSampling(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 **kwargs):
        super(GCNSampling, self).__init__(**kwargs)
        self.dropout = dropout
        self.n_layers = n_layers
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            skip_start = (0 == n_layers-1)
            self.layers.add(NodeUpdate(in_feats, n_hidden, activation, concat=skip_start))
            # hidden layers
            for i in range(1, n_layers):
                skip_start = (i == n_layers-1)
                self.layers.add(NodeUpdate(n_hidden, n_hidden, activation, concat=skip_start))
            # output layer
            self.layers.add(NodeUpdate(2*n_hidden, n_classes))


    def forward(self, nf):
        nf.layers[0].data['activation'] = nf.layers[0].data['features']

        for i, layer in enumerate(self.layers):
            h = nf.layers[i].data.pop('activation')
            if self.dropout:
                h = mx.nd.Dropout(h, p=self.dropout)
            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             lambda node : {'h': node.mailbox['m'].mean(axis=1)},
                             layer)

        h = nf.layers[-1].data.pop('activation')
        return h


class GCNInfer(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 **kwargs):
        super(GCNInfer, self).__init__(**kwargs)
        self.n_layers = n_layers
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            skip_start = (0 == n_layers-1)
            self.layers.add(NodeUpdate(in_feats, n_hidden, activation, test=True, concat=skip_start))
            # hidden layers
            for i in range(1, n_layers):
                skip_start = (i == n_layers-1)
                self.layers.add(NodeUpdate(n_hidden, n_hidden, activation, test=True, concat=skip_start))
            # output layer
            self.layers.add(NodeUpdate(2*n_hidden, n_classes, test=True))


    def forward(self, nf):
        nf.layers[0].data['activation'] = nf.layers[0].data['features']

        for i, layer in enumerate(self.layers):
            h = nf.layers[i].data.pop('activation')
            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)

        h = nf.layers[-1].data.pop('activation')
        return h


def main(args):
    # load and preprocess dataset
    data = load_data(args)

    if args.gpu >= 0:
        ctx = mx.gpu(args.gpu)
    else:
        ctx = mx.cpu()

    if args.self_loop and not args.dataset.startswith('reddit'):
        data.graph.add_edges_from([(i,i) for i in range(len(data.graph))])

    # Create sampler receiver
    receiver = dgl.contrib.sampling.SamplerReceiver(ip=args.ip, port=args.port, num_sender=args.num_sender)

    train_nid = mx.nd.array(np.nonzero(data.train_mask)[0]).astype(np.int64).as_in_context(ctx)
    test_nid = mx.nd.array(np.nonzero(data.test_mask)[0]).astype(np.int64).as_in_context(ctx)

    features = mx.nd.array(data.features).as_in_context(ctx)
    labels = mx.nd.array(data.labels).as_in_context(ctx)
    train_mask = mx.nd.array(data.train_mask).as_in_context(ctx)
    val_mask = mx.nd.array(data.val_mask).as_in_context(ctx)
    test_mask = mx.nd.array(data.test_mask).as_in_context(ctx)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    n_train_samples = train_mask.sum().asscalar()
    n_val_samples = val_mask.sum().asscalar()
    n_test_samples = test_mask.sum().asscalar()

    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              n_train_samples,
              n_val_samples,
              n_test_samples))

    # create GCN model
    g = DGLGraph(data.graph, readonly=True)

    g.ndata['features'] = features

    num_neighbors = args.num_neighbors

    degs = g.in_degrees().astype('float32').as_in_context(ctx)
    norm = mx.nd.expand_dims(1./degs, 1)
    g.ndata['norm'] = norm

    model = GCNSampling(in_feats,
                        args.n_hidden,
                        n_classes,
                        args.n_layers,
                        mx.nd.relu,
                        args.dropout,
                        prefix='GCN')

    model.initialize(ctx=ctx)
    loss_fcn = gluon.loss.SoftmaxCELoss()

    infer_model = GCNInfer(in_feats,
                           args.n_hidden,
                           n_classes,
                           args.n_layers,
                           mx.nd.relu,
                           prefix='GCN')

    infer_model.initialize(ctx=ctx)

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
                            {'learning_rate': args.lr, 'wd': args.weight_decay},
                            kvstore=mx.kv.create('local'))

    # initialize graph
    dur = []
    total_count = 153
    for epoch in range(args.n_epochs):
        for subg_count in range(total_count):
            print(subg_count)
            nf = receiver.recv(g)
            nf.copy_from_parent()
            # forward
            with mx.autograd.record():
                pred = model(nf)
                batch_nids = nf.layer_parent_nid(-1).astype('int64').as_in_context(ctx)
                batch_labels = labels[batch_nids]
                loss = loss_fcn(pred, batch_labels)
                loss = loss.sum() / len(batch_nids)

            loss.backward()
            trainer.step(batch_size=1)

        infer_params = infer_model.collect_params()

        for key in infer_params:
            idx = trainer._param2idx[key]
            trainer._kvstore.pull(idx, out=infer_params[key].data())

        num_acc = 0.

        for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                       g.number_of_nodes(),
                                                       neighbor_type='in',
                                                       num_hops=args.n_layers+1,
                                                       seed_nodes=test_nid):
            nf.copy_from_parent()
            pred = infer_model(nf)
            batch_nids = nf.layer_parent_nid(-1).astype('int64').as_in_context(ctx)
            batch_labels = labels[batch_nids]
            num_acc += (pred.argmax(axis=1) == batch_labels).sum().asscalar()

        print("Test Accuracy {:.4f}". format(num_acc/n_test_samples))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=3e-2,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
            help="number of training epochs")
    parser.add_argument("--batch-size", type=int, default=1000,
            help="batch size")
    parser.add_argument("--test-batch-size", type=int, default=1000,
            help="test batch size")
    parser.add_argument("--num-neighbors", type=int, default=3,
            help="number of neighbors to be sampled")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    parser.add_argument("--self-loop", action='store_true',
            help="graph self-loop (default=False)")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
            help="Weight for L2 loss")
    parser.add_argument("--ip", type=str, default='127.0.0.1',
            help="IP address of sampler receiver machine")
    parser.add_argument("--port", type=int, default=2049,
            help="Listening port of sampler receiver machine")
    parser.add_argument("--num-sender", type=int, default=1,
            help="Number of sampler sender machine")
    args = parser.parse_args()

    print(args)

    main(args)