test_heterograph.py 117 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
import test_utils
nv-dlasalle's avatar
nv-dlasalle committed
12
from test_utils import parametrize_idtype, get_cases
13
from utils import assert_is_identical_hetero
14
from scipy.sparse import rand
15
import multiprocessing as mp
16

17
def create_test_heterograph(idtype):
18
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
19
20
21
22
23
24
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
25

26
27
28
29
30
31
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
32
33
    assert g.idtype == idtype
    assert g.device == F.ctx()
34
35
    return g

36
def create_test_heterograph1(idtype):
Minjie Wang's avatar
Minjie Wang committed
37
    edges = []
38
39
40
41
42
    edges.extend([(0, 1), (1, 2)])  # follows
    edges.extend([(0, 3), (1, 3), (2, 4), (1, 4)])  # plays
    edges.extend([(0, 4), (2, 3)])  # wishes
    edges.extend([(5, 3), (6, 4)])  # develops
    edges = tuple(zip(*edges))
Minjie Wang's avatar
Minjie Wang committed
43
44
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
45
    g0 = dgl.graph(edges, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
46
47
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
48
49
    return dgl.to_heterogeneous(g0, ['user', 'game', 'developer'],
                                ['follows', 'plays', 'wishes', 'develops'])
Minjie Wang's avatar
Minjie Wang committed
50

51
def create_test_heterograph2(idtype):
52
    g = dgl.heterograph({
53
54
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
55
56
        ('user', 'wishes', 'game'): ('csr', ([0, 1, 1, 2], [1, 0], [])),
        ('developer', 'develops', 'game'): ('csc', ([0, 1, 2], [0, 1], [0, 1])),
57
58
59
        }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
60
61
    return g

62
63
64
65
66
67
68
def create_test_heterograph3(idtype):
    g = dgl.heterograph({
        ('user', 'plays', 'game'): (F.tensor([0, 1, 1, 2], dtype=idtype),
                                    F.tensor([0, 0, 1, 1], dtype=idtype)),
        ('developer', 'develops', 'game'): (F.tensor([0, 1], dtype=idtype),
                                            F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
69
70
71
72

    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.nodes['developer'].data['h'] = F.copy_to(F.tensor([3, 3], dtype=idtype), ctx=F.ctx())
73
74
75
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx())
    return g

76
def create_test_heterograph4(idtype):
77
78
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
79
                                      F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
80
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
81
                                    F.tensor([0, 1], dtype=idtype))},
82
        idtype=idtype, device=F.ctx())
83
84
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
85
86
87
88
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    return g

89
def create_test_heterograph5(idtype):
90
91
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
92
                                      F.tensor([0, 1], dtype=idtype)),
93
94
95
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
96
97
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
98
99
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
100
101
    return g

Minjie Wang's avatar
Minjie Wang committed
102
103
104
def get_redfn(name):
    return getattr(F, name)

nv-dlasalle's avatar
nv-dlasalle committed
105
@parametrize_idtype
106
107
108
109
110
def test_create(idtype):
    device = F.ctx()
    g0 = create_test_heterograph(idtype)
    g1 = create_test_heterograph1(idtype)
    g2 = create_test_heterograph2(idtype)
111
112
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    # Create a bipartite graph from a SciPy matrix
    src_ids = np.array([2, 3, 4])
    dst_ids = np.array([1, 2, 3])
    eweight = np.array([0.2, 0.3, 0.5])
    sp_mat = ssp.coo_matrix((eweight, (src_ids, dst_ids)))
    g = dgl.bipartite_from_scipy(sp_mat, utype='user', etype='plays',
                                 vtype='game', idtype=idtype, device=device)
    assert g.idtype == idtype
    assert g.device == device
    assert g.num_src_nodes() == 5
    assert g.num_dst_nodes() == 4
    assert g.num_edges() == 3
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([2, 3, 4], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2, 3], dtype=idtype))
    g = dgl.bipartite_from_scipy(sp_mat, utype='_U', etype='_E', vtype='_V',
                                 eweight_name='w', idtype=idtype, device=device)
    assert F.allclose(g.edata['w'], F.tensor(eweight))

    # Create a bipartite graph from a NetworkX graph
    nx_g = nx.DiGraph()
    nx_g.add_nodes_from([1, 3], bipartite=0, feat1=np.zeros((2)), feat2=np.ones((2)))
    nx_g.add_nodes_from([2, 4, 5], bipartite=1, feat3=np.zeros((3)))
    nx_g.add_edge(1, 4, weight=np.ones((1)), eid=np.array([1]))
    nx_g.add_edge(3, 5, weight=np.ones((1)), eid=np.array([0]))
    g = dgl.bipartite_from_networkx(nx_g, utype='user', etype='plays',
                                    vtype='game', idtype=idtype, device=device)
141
142
    assert g.idtype == idtype
    assert g.device == device
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    assert g.num_src_nodes() == 2
    assert g.num_dst_nodes() == 3
    assert g.num_edges() == 2
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([0, 1], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2], dtype=idtype))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    u_attrs=['feat1', 'feat2'],
                                    e_attrs = ['weight'], v_attrs = ['feat3'])
    assert F.allclose(g.srcdata['feat1'], F.tensor(np.zeros((2, 2))))
    assert F.allclose(g.srcdata['feat2'], F.tensor(np.ones((2, 2))))
    assert F.allclose(g.dstdata['feat3'], F.tensor(np.zeros((3, 3))))
    assert F.allclose(g.edata['weight'], F.tensor(np.ones((2, 1))))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    edge_id_attr_name='eid', idtype=idtype, device=device)
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([1, 0], dtype=idtype))
    assert F.allclose(dst, F.tensor([2, 1], dtype=idtype))
Minjie Wang's avatar
Minjie Wang committed
161
162
163

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
164
165
166
    g = dgl.from_scipy(spmat, idtype=idtype, device=device)
    assert g.num_nodes() == 4
    assert g.num_edges() == 3
167
168
    assert g.idtype == idtype
    assert g.device == device
Minjie Wang's avatar
Minjie Wang committed
169

170
171
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
172
173
174
        ('l0', 'e0', 'l1'): ([0, 0], [1, 2]),
        ('l0', 'e1', 'l2'): ([2], [2]),
        ('l2', 'e2', 'l2'): ([1, 3], [1, 3])
175
        }, idtype=idtype, device=device)
176
177
178
    assert g.num_nodes('l0') == 3
    assert g.num_nodes('l1') == 3
    assert g.num_nodes('l2') == 4
179
180
    assert g.idtype == idtype
    assert g.device == device
181

182
183
    # test if validate flag works
    # homo graph
184
    with pytest.raises(DGLError):
185
186
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
187
            num_nodes=2,
188
            idtype=idtype, device=device
189
190
191
        )
    # bipartite graph
    def _test_validate_bipartite(card):
192
        with pytest.raises(DGLError):
193
194
195
            g = dgl.heterograph({
                ('_U', '_E', '_V'): ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3])
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=device)
196
197
198
199

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

200
201
202
203
204
205
206
207
208
209
    # test from_scipy
    num_nodes = 10
    density = 0.25
    for fmt in ['csr', 'coo', 'csc']:
        adj = rand(num_nodes, num_nodes, density=density, format=fmt)
        g = dgl.from_scipy(adj, eweight_name='w', idtype=idtype)
        assert g.idtype == idtype
        assert g.device == F.cpu()
        assert F.array_equal(g.edata['w'], F.copy_to(F.tensor(adj.data), F.cpu()))

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def test_create2():
    mat = ssp.random(20, 30, 0.1)

    # coo
    mat = mat.tocoo()
    row = F.tensor(mat.row, dtype=F.int64)
    col = F.tensor(mat.col, dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('coo', (row, col))}, num_nodes_dict={'A': 20, 'B': 30})

    # csr
    mat = mat.tocsr()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csr', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

    # csc
    mat = mat.tocsc()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csc', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

nv-dlasalle's avatar
nv-dlasalle committed
236
@parametrize_idtype
237
238
def test_query(idtype):
    g = create_test_heterograph(idtype)
239
240

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
241
    canonical_etypes = [
242
243
244
245
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
246
    etypes = ['follows', 'plays', 'wishes', 'develops']
247
248

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
249
250
251
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
252
253

    # metagraph
254
    mg = g.metagraph()
Minjie Wang's avatar
Minjie Wang committed
255
    assert set(g.ntypes) == set(mg.nodes)
256
257
258
259
260
261
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
262
263
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
264

265
266
    def _test(g):
        # number of nodes
267
        assert [g.num_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
268

269
        # number of edges
270
        assert [g.num_edges(etype) for etype in etypes] == [2, 4, 2, 2]
271

272
        # has_nodes
273
274
275
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
276
277
                assert g.has_nodes(i, ntype)
            assert not g.has_nodes(n, ntype)
278
279
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
280

281
        assert not g.is_multigraph
Minjie Wang's avatar
Minjie Wang committed
282
283
284
285

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
286
                assert g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
287
288
289
290
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
291
                assert not g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
292
293
294
295
296
297
298
299
300
301
302
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
303
            assert g.in_degrees(0, etype) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
304
305
306
307
308
309
310

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
311
            assert g.out_degrees(0, etype) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
312

313
            # edge_ids
Minjie Wang's avatar
Minjie Wang committed
314
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
315
316
317
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
318
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
319
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
320
321
322
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
323

Minjie Wang's avatar
Minjie Wang committed
324
            # find_edges
325
326
            for eid in [list(range(n_edges)), np.arange(n_edges), F.astype(F.arange(0, n_edges), g.idtype)]:
                u, v = g.find_edges(eid, etype)
327
328
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
329
330
331

            # all_edges.
            for order in ['eid']:
332
                u, v, e = g.edges('all', order, etype)
Minjie Wang's avatar
Minjie Wang committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
361
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
362
    _test(g)
363
    g = create_test_heterograph1(idtype)
364
    _test(g)
365
366
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
367
        g = create_test_heterograph2(idtype)
368
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
384
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
385
    _test(g)
386
    g = create_test_heterograph1(idtype)
387
    _test(g)
388
389
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
390
        g = create_test_heterograph2(idtype)
391
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
392
393
394
395

    # test repr
    print(g)

nv-dlasalle's avatar
nv-dlasalle committed
396
@parametrize_idtype
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def test_empty_query(idtype):
    g = dgl.graph(([1, 2, 3], [0, 4, 5]), idtype=idtype, device=F.ctx())
    g.add_nodes(0)
    g.add_edges([], [])
    g.remove_edges([])
    g.remove_nodes([])
    assert F.shape(g.has_nodes([])) == (0,)
    assert F.shape(g.has_edges_between([], [])) == (0,)
    g.edge_ids([], [])
    g.edge_ids([], [], return_uv=True)
    g.find_edges([])

    assert F.shape(g.in_edges([], form='eid')) == (0,)
    u, v = g.in_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.in_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.out_edges([], form='eid')) == (0,)
    u, v = g.out_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.out_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.in_degrees([])) == (0,)
    assert F.shape(g.out_degrees([])) == (0,)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    g = dgl.graph(([], []), idtype=idtype, device=F.ctx())
    error_thrown = True
    try:
        g.in_degrees([0])
        fail = False
    except:
        pass
    assert error_thrown
    error_thrown = True
    try:
        g.out_degrees([0])
        fail = False
    except:
        pass
    assert error_thrown

446
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU does not have COO impl.")
447
def _test_hypersparse():
448
449
450
451
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
452
453
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
454
        {'user': N1, 'game': N1},
455
        device=F.ctx())
456
457
458
459
460
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

461
462
    assert g.has_edges_between(0, 1, 'follows')
    assert not g.has_edges_between(0, 0, 'follows')
463
464
465
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

466
467
    assert g.has_edges_between(0, N2, 'plays')
    assert not g.has_edges_between(0, 0, 'plays')
468
469
470
471
472
473
474
475
476
477
478
479
480
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

481
482
    assert g.edge_ids(0, 1, etype='follows') == 0
    assert g.edge_ids(0, N2, etype='plays') == 0
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

499
500
    assert g.in_degrees(0, 'follows') == 0
    assert g.in_degrees(1, 'follows') == 1
501
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
502
503
    assert g.in_degrees(0, 'plays') == 0
    assert g.in_degrees(N2, 'plays') == 1
504
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
505
506
    assert g.out_degrees(0, 'follows') == 1
    assert g.out_degrees(1, 'follows') == 0
507
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
508
509
    assert g.out_degrees(0, 'plays') == 1
    assert g.out_degrees(N2, 'plays') == 0
510
511
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

512
def _test_edge_ids():
513
514
515
516
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
517
518
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
519
        {'user': N1, 'game': N1})
520
521
    with pytest.raises(DGLError):
        eid = g.edge_ids(0, 0, etype='follows')
522
523

    g2 = dgl.heterograph({
524
525
526
        ('user', 'follows', 'user'): (F.tensor([0, 0], F.int64), F.tensor([1, 1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
        {'user': N1, 'game': N1}, device=F.cpu())
527

528
529
    eid = g2.edge_ids(0, 1, etype='follows')
    assert eid == 0
530

nv-dlasalle's avatar
nv-dlasalle committed
531
@parametrize_idtype
532
533
def test_adj(idtype):
    g = create_test_heterograph(idtype)
534
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
535
536
537
538
539
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
540
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
541
542
543
544
545
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
546
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
547
548
549
550
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
551
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
552
553
554
555
556
557
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

558
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
559
560
561
562
563
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
564
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
565
566
567
568
569
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
570
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
571
572
573
574
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
575
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
576
577
578
579
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
580
    adj = F.sparse_to_numpy(g['follows'].adj(transpose=True))
Minjie Wang's avatar
Minjie Wang committed
581
582
583
584
585
586
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

nv-dlasalle's avatar
nv-dlasalle committed
587
@parametrize_idtype
588
589
def test_inc(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
625

nv-dlasalle's avatar
nv-dlasalle committed
626
@parametrize_idtype
627
def test_view(idtype):
628
    # test single node type
629
630
631
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1
    f2 = g.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    fail = False
    try:
        g.ndata['h'] = {'user' : f1}
    except Exception:
        fail = True
    assert fail

    # test single edge type
    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    fail = False
    try:
        g.edata['h'] = {'follows' : f3}
    except Exception:
        fail = True
    assert fail

Minjie Wang's avatar
Minjie Wang committed
655
    # test data view
656
    g = create_test_heterograph(idtype)
657
658

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
659
660
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
661
    assert F.array_equal(f1, f2)
662
    assert F.array_equal(g.nodes('user'), F.arange(0, 3, idtype))
663
664
665
666
667
668
669
670
671
672
673
    g.nodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.ndata['h'] = f1
    except Exception:
        fail = True
    assert fail
674
675

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
676
677
678
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
679
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
680
    assert F.array_equal(f3, f5)
681
    assert F.array_equal(g.edges(etype='follows', form='eid'), F.arange(0, 2, idtype))
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    g.edges['follows'].data.pop('h')

    f3 = F.randn((2, 4))
    fail = False
    try:
        g.edata['h'] = f3
    except Exception:
        fail = True
    assert fail

    # test srcdata
    f1 = F.randn((3, 6))
    g.srcnodes['user'].data['h'] = f1       # ok
    f2 = g.srcnodes['user'].data['h']
    assert F.array_equal(f1, f2)
697
    assert F.array_equal(g.srcnodes('user'), F.arange(0, 3, idtype))
698
699
700
701
702
703
704
    g.srcnodes['user'].data.pop('h')

    # test dstdata
    f1 = F.randn((3, 6))
    g.dstnodes['user'].data['h'] = f1       # ok
    f2 = g.dstnodes['user'].data['h']
    assert F.array_equal(f1, f2)
705
    assert F.array_equal(g.dstnodes('user'), F.arange(0, 3, idtype))
706
707
    g.dstnodes['user'].data.pop('h')

nv-dlasalle's avatar
nv-dlasalle committed
708
@parametrize_idtype
709
def test_view1(idtype):
Minjie Wang's avatar
Minjie Wang committed
710
    # test relation view
711
    HG = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
726
                assert g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
727
728
729
730
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
731
                assert not g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
732
733
734
735
736
737
738
739
740
741
742
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
743
            assert g.in_degrees(0) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
744
745
746
747
748
749
750

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
751
            assert g.out_degrees(0) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
752

753
            # edge_ids
Minjie Wang's avatar
Minjie Wang committed
754
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
755
756
757
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
758
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
759
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
760
761
762
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
784
                assert in_degrees[i] == dst_count[i]
Minjie Wang's avatar
Minjie Wang committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
829
    assert F.array_equal(g.nodes(), F.arange(0, 3, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
830
831
832
833
834

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
835
    assert F.array_equal(g.edges(form='eid'), F.arange(0, 2, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
836

nv-dlasalle's avatar
nv-dlasalle committed
837
@parametrize_idtype
838
def test_flatten(idtype):
Minjie Wang's avatar
Minjie Wang committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
854
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
855
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
856
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
857
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
858
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
859
860
861
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
862
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
863
864
865
866
867
868
869
870
871
872
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']
873
874
    assert fg.idtype == g.idtype
    assert fg.device == g.device
875
876
    etype = fg.etypes[0]
    assert fg[etype] is not None        # Issue #2166
Minjie Wang's avatar
Minjie Wang committed
877
878
879
880
881
882
883
884

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
885
    assert set(zip(etypes, eids)) == set([(3, 0), (3, 1), (2, 1), (2, 0), (2, 3), (2, 2)])
Minjie Wang's avatar
Minjie Wang committed
886
887
888
889

    check_mapping(g, fg)

    fg = g['user', :, 'user']
890
891
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
892
893
894
895
896
897
898
899
900
901
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
902
903
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
904
905
906
907
908
909
910
911
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
912
913
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
914
915
916
917
918
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
919
920
921
922
923
924
925
926
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2], [1, 2, 3]),
        ('user', 'knows', 'user'): ([0, 2], [2, 3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.randn((4, 3))
    g.edges['follows'].data['w'] = F.randn((3, 2))
    g.nodes['user'].data['hh'] = F.randn((4, 5))
    g.edges['knows'].data['ww'] = F.randn((2, 10))
Minjie Wang's avatar
Minjie Wang committed
927
928

    fg = g['user', :, 'user']
929
930
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
931
932
933
934
935
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
936
937
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
938
939
940
941
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

942
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
nv-dlasalle's avatar
nv-dlasalle committed
943
@parametrize_idtype
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
def test_to_device(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    assert g.device == F.ctx()
    g = g.to(F.cpu())
    assert g.device == F.cpu()
    assert F.context(g.nodes['user'].data['h']) == F.cpu()
    assert F.context(g.nodes['game'].data['i']) == F.cpu()
    assert F.context(g.edges['plays'].data['e']) == F.cpu()
    for ntype in g.ntypes:
        assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
    for etype in g.canonical_etypes:
        assert F.context(g.batch_num_edges(etype)) == F.cpu()

962
    if F.is_cuda_available():
963
        g1 = g.to(F.cuda())
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
        assert g1.device == F.cuda()
        assert F.context(g1.nodes['user'].data['h']) == F.cuda()
        assert F.context(g1.nodes['game'].data['i']) == F.cuda()
        assert F.context(g1.edges['plays'].data['e']) == F.cuda()
        for ntype in g1.ntypes:
            assert F.context(g1.batch_num_nodes(ntype)) == F.cuda()
        for etype in g1.canonical_etypes:
            assert F.context(g1.batch_num_edges(etype)) == F.cuda()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()
        with pytest.raises(DGLError):
            g1.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cpu())
        with pytest.raises(DGLError):
            g1.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cpu())
983

984
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
nv-dlasalle's avatar
nv-dlasalle committed
985
@parametrize_idtype
986
987
988
989
990
@pytest.mark.parametrize('g', get_cases(['block']))
def test_to_device2(g, idtype):
    g = g.astype(idtype)
    g = g.to(F.cpu())
    assert g.device == F.cpu()
991
992
    if F.is_cuda_available():
        g1 = g.to(F.cuda())
993
994
995
996
        assert g1.device == F.cuda()
        assert g1.ntypes == g.ntypes
        assert g1.etypes == g.etypes
        assert g1.canonical_etypes == g.canonical_etypes
997

998
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
999
@unittest.skipIf(dgl.backend.backend_name != "pytorch", reason="Pinning graph inplace only supported for PyTorch")
nv-dlasalle's avatar
nv-dlasalle committed
1000
@parametrize_idtype
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
def test_pin_memory_(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g = g.to(F.cpu())
    assert not g.is_pinned()

1011
1012
1013
1014
    # unpin an unpinned CPU graph, directly return
    g.unpin_memory_()
    assert not g.is_pinned()
    assert g.device == F.cpu()
1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    # pin a CPU graph
    g.pin_memory_()
    assert g.is_pinned()
    assert g.device == F.cpu()
    assert g.nodes['user'].data['h'].is_pinned()
    assert g.nodes['game'].data['i'].is_pinned()
    assert g.edges['plays'].data['e'].is_pinned()
    assert F.context(g.nodes['user'].data['h']) == F.cpu()
    assert F.context(g.nodes['game'].data['i']) == F.cpu()
    assert F.context(g.edges['plays'].data['e']) == F.cpu()
    for ntype in g.ntypes:
        assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
    for etype in g.canonical_etypes:
        assert F.context(g.batch_num_edges(etype)) == F.cpu()
1030

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    # it's fine to clone with new formats, but new graphs are not pinned
    # >>> g.formats()
    # {'created': ['coo'], 'not created': ['csr', 'csc']}
    assert not g.formats('csc').is_pinned()
    assert not g.formats('csr').is_pinned()
    # 'coo' formats is already created and thus not cloned
    assert g.formats('coo').is_pinned()

    # pin a pinned graph, directly return
    g.pin_memory_()
    assert g.is_pinned()
    assert g.device == F.cpu()
1043

1044
1045
1046
1047
    # unpin a pinned graph
    g.unpin_memory_()
    assert not g.is_pinned()
    assert g.device == F.cpu()
1048

1049
    g1 = g.to(F.cuda())
1050

1051
1052
1053
1054
    # unpin an unpinned GPU graph, directly return
    g1.unpin_memory_()
    assert not g1.is_pinned()
    assert g1.device == F.cuda()
1055

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    # error pinning a GPU graph
    with pytest.raises(DGLError):
        g1.pin_memory_()

    # test pin empty homograph
    g2 = dgl.graph(([], []))
    g2.pin_memory_()
    assert g2.is_pinned()
    g2.unpin_memory_()
    assert not g2.is_pinned()

    # test pin heterograph with 0 edge of one relation type
    g3 = dgl.heterograph({
        ('a','b','c'): ([0, 1], [1, 2]),
        ('c','d','c'): ([], [])}).astype(idtype)
    g3.pin_memory_()
    assert g3.is_pinned()
    g3.unpin_memory_()
    assert not g3.is_pinned()
1075

nv-dlasalle's avatar
nv-dlasalle committed
1076
@parametrize_idtype
1077
def test_convert_bound(idtype):
1078
    def _test_bipartite_bound(data, card):
1079
        with pytest.raises(DGLError):
1080
1081
1082
            dgl.heterograph({
                ('_U', '_E', '_V'): data
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=F.ctx())
1083
1084

    def _test_graph_bound(data, card):
1085
1086
        with pytest.raises(DGLError):
            dgl.graph(data, num_nodes=card, idtype=idtype, device=F.ctx())
1087

1088
1089
1090
1091
    _test_bipartite_bound(([1, 2], [1, 2]), (2, 3))
    _test_bipartite_bound(([0, 1], [1, 4]), (2, 3))
    _test_graph_bound(([1, 3], [1, 2]), 3)
    _test_graph_bound(([0, 1], [1, 3]), 3)
1092
1093


nv-dlasalle's avatar
nv-dlasalle committed
1094
@parametrize_idtype
1095
1096
def test_convert(idtype):
    hg = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

1110
    g = dgl.to_homogeneous(hg, ndata=['h'], edata=['w'])
1111
1112
    assert g.idtype == idtype
    assert g.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
1138
        hg2 = dgl.to_heterogeneous(
1139
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
1140
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
1141
1142
        assert hg2.idtype == hg.idtype
        assert hg2.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
1156
    g = dgl.graph(([0, 1, 2, 0], [2, 2, 3, 3]), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1157
1158
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
1159
    hg = dgl.to_heterogeneous(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
1160
1161
    assert hg.idtype == idtype
    assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1162
1163
1164
1165
1166
1167
1168
1169
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1
1170
1171
1172
1173
1174
1175
    assert F.array_equal(hg.ndata[dgl.NID]['l0'], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l1'], F.tensor([2], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l2'], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e0', 'l1')], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e2', 'l2')], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l1', 'e1', 'l2')], F.tensor([2], F.int64))
Minjie Wang's avatar
Minjie Wang committed
1176
1177
1178
1179
1180

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
1181
    g = dgl.graph(((0, 0), (1, 2)), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1182
1183
1184
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
1185
        hg = dgl.to_heterogeneous(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
1186
1187
        assert hg.idtype == g.idtype
        assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

1197
    # hetero_to_homo test case 2
1198
1199
1200
1201
    hg = dgl.heterograph({
        ('_U', '_E', '_V'): ([0, 1], [0, 1])
    }, {'_U': 2, '_V': 3}, idtype=idtype, device=F.ctx())
    g = dgl.to_homogeneous(hg)
1202
1203
    assert hg.idtype == g.idtype
    assert hg.device == g.device
1204
1205
    assert g.number_of_nodes() == 5

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
    # hetero_to_subgraph_to_homo
    hg = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2])
    }, idtype=idtype, device=F.ctx())
    hg.nodes['user'].data['h'] = F.copy_to(
        F.tensor([[1, 0], [0, 1], [1, 1]], dtype=idtype), ctx=F.ctx())
    sg = dgl.node_subgraph(hg, {'user': [1, 2]})
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    assert sg.num_nodes('user') == 2
    assert sg.num_nodes('game') == 0
    g = dgl.to_homogeneous(sg, ndata=['h'])
    assert 'h' in g.ndata.keys()
    assert g.num_nodes() == 2

1222
@unittest.skipIf(F._default_context_str == 'gpu', reason="Test on cpu is enough")
nv-dlasalle's avatar
nv-dlasalle committed
1223
@parametrize_idtype
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
def test_to_homo_zero_nodes(idtype):
    # Fix gihub issue #2870
    g = dgl.heterograph({
        ('A', 'AB', 'B'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
        ('B', 'BA', 'A'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
    }, num_nodes_dict={'A': 200, 'B': 200, 'C': 0}, idtype=idtype)
    g.nodes['A'].data['x'] = F.randn((200, 3))
    g.nodes['B'].data['x'] = F.randn((200, 3))
    gg = dgl.to_homogeneous(g, ['x'])
    assert 'x' in gg.ndata

nv-dlasalle's avatar
nv-dlasalle committed
1235
@parametrize_idtype
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
def test_to_homo2(idtype):
    # test the result homogeneous graph has nodes and edges sorted by their types
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    ntypes = F.asnumpy(g.ndata[dgl.NTYPE])
    etypes = F.asnumpy(g.edata[dgl.ETYPE])
    p = 0
    for tid, ntype in enumerate(hg.ntypes):
        num_nodes = hg.num_nodes(ntype)
        for i in range(p, p + num_nodes):
            assert ntypes[i] == tid
        p += num_nodes
    p = 0
    for tid, etype in enumerate(hg.canonical_etypes):
        num_edges = hg.num_edges(etype)
        for i in range(p, p + num_edges):
            assert etypes[i] == tid
        p += num_edges
    # test store_type=False
    g = dgl.to_homogeneous(hg, store_type=False)
    assert dgl.NTYPE not in g.ndata
    assert dgl.ETYPE not in g.edata
    # test return_count=True
    g, ntype_count, etype_count = dgl.to_homogeneous(hg, return_count=True)
    for i, count in enumerate(ntype_count):
        assert count == hg.num_nodes(hg.ntypes[i])
    for i, count in enumerate(etype_count):
        assert count == hg.num_edges(hg.canonical_etypes[i])

nv-dlasalle's avatar
nv-dlasalle committed
1265
@parametrize_idtype
1266
1267
1268
1269
1270
1271
1272
def test_invertible_conversion(idtype):
    # Test whether to_homogeneous and to_heterogeneous are invertible
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    hg2 = dgl.to_heterogeneous(g, hg.ntypes, hg.etypes)
    assert_is_identical_hetero(hg, hg2, True)

nv-dlasalle's avatar
nv-dlasalle committed
1273
@parametrize_idtype
1274
1275
def test_metagraph_reachable(idtype):
    g = create_test_heterograph(idtype)
Mufei Li's avatar
Mufei Li committed
1276
1277
1278
1279
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
1280
    assert new_g.idtype == idtype
1281
    assert new_g.ntypes == ['game', 'user']
Mufei Li's avatar
Mufei Li committed
1282
1283
1284
1285
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
1286
    assert new_g.idtype == idtype
Mufei Li's avatar
Mufei Li committed
1287
1288
1289
1290
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

1291
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
nv-dlasalle's avatar
nv-dlasalle committed
1292
@parametrize_idtype
1293
1294
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
1295
1296
1297
1298
1299
1300
1301
1302
1303
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1304
1305
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1306
1307
1308
1309
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1310
                             F.tensor([1, 2], idtype))
1311
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1312
                             F.tensor([0], idtype))
1313
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1314
                             F.tensor([1], idtype))
1315
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1316
                             F.tensor([1], idtype))
1317
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1318
                             F.tensor([1], idtype))
1319
1320
1321
1322
1323
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

1324
1325
    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
1326
    _check_subgraph(g, sg1)
1327
1328
1329
1330
1331
1332
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                               'plays': F.tensor([False, True, False, False], dtype=F.bool),
                               'wishes': F.tensor([False, True], dtype=F.bool)})
        _check_subgraph(g, sg2)
1333

nv-dlasalle's avatar
nv-dlasalle committed
1334
@parametrize_idtype
1335
1336
def test_subgraph(idtype):
    g = create_test_heterograph(idtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1337
1338
1339
    g_graph = g['follows']
    g_bipartite = g['plays']

Minjie Wang's avatar
Minjie Wang committed
1340
1341
1342
1343
1344
1345
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1346
1347
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1348
1349
1350
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
1351
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1352
                             F.tensor([1, 2], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1353
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1354
                             F.tensor([0], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1355
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1356
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1357
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1358
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1359
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1360
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1361
1362
1363
1364
1365
1366
1367
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
1368
1369
1370
1371
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
        _check_subgraph(g, sg2)
Minjie Wang's avatar
Minjie Wang committed
1372

1373
    # backend tensor input
1374
1375
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
1376
    _check_subgraph(g, sg1)
1377
1378
1379
1380
1381
1382
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                               'plays': F.tensor([1], dtype=idtype),
                               'wishes': F.tensor([1], dtype=idtype)})
        _check_subgraph(g, sg2)
1383
1384
1385
1386
1387

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
1388
1389
1390
1391
1392
1393
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': np.array([1]),
                               'plays': np.array([1]),
                               'wishes': np.array([1])})
        _check_subgraph(g, sg2)
1394

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1395
    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
1396
1397
        assert sg.idtype == g.idtype
        assert sg.device == g.device
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1398
1399
1400
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1401
1402
1403

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1404
                                 F.tensor([1, 2], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1405
1406
1407
1408
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1409
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1410
                             F.tensor([1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1411
1412
1413

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1414
1415
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1416
    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1417
1418
1419
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1420
1421
1422

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1423
                                 F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1424
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1425
                                 F.tensor([0], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1426
1427
1428
1429
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1430
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1431
                             F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1432
1433
1434

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
1435
1436
1437
1438
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg1_graph = g_graph.edge_subgraph([1])
        _check_subgraph_single_ntype(g_graph, sg1_graph)
1439
        sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
1440
1441
1442
        _check_subgraph_single_ntype(g_graph, sg1_graph, True)
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
1443
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
1444
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1445

1446
    def _check_typed_subgraph1(g, sg):
1447
1448
        assert g.idtype == sg.idtype
        assert g.device == sg.device
Minjie Wang's avatar
Minjie Wang committed
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
1460
1461
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
1462
1463
1464
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
1476
    sg3 = g.node_type_subgraph(['user', 'game'])
1477
1478
1479
1480
1481
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
1482

nv-dlasalle's avatar
nv-dlasalle committed
1483
@parametrize_idtype
1484
def test_apply(idtype):
1485
1486
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
1487
1488
    def node_udf2(nodes):
        return {'h': F.sum(nodes.data['h'], dim=1, keepdims=True)}
1489
1490
1491
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

1492
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
1504

Minjie Wang's avatar
Minjie Wang committed
1505
1506
1507
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

1508
1509
1510
1511
1512
    # Test the case that feature size changes
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf2, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 1)) * 5)

Minjie Wang's avatar
Minjie Wang committed
1513
1514
    # test fail case
    # fail due to multiple types
1515
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1516
1517
        g.apply_nodes(node_udf)

1518
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1519
1520
        g.apply_edges(edge_udf)

nv-dlasalle's avatar
nv-dlasalle committed
1521
@parametrize_idtype
1522
def test_level2(idtype):
Minjie Wang's avatar
Minjie Wang committed
1523
1524
1525
1526
1527
1528
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1529
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
1552

Minjie Wang's avatar
Minjie Wang committed
1553
1554
    # test fail case
    # fail due to multiple types
1555
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
        g.send_and_recv([2, 3], mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
1575
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
        g.pull(1, mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
1596
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
        g.update_all(mfunc, rfunc)

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1626
1627
1628
1629
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1630
1631
1632
1633
1634
1635
1636
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
1637
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1638
1639
1640
1641
1642
1643
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')

    g.nodes['game'].data.clear()
1644

nv-dlasalle's avatar
nv-dlasalle committed
1645
@parametrize_idtype
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
def test_more_nnz(idtype):
    g = dgl.graph(([0, 0, 0, 0, 0], [1, 1, 1, 1, 1]), idtype=idtype, device=F.ctx())
    g.ndata['x'] = F.copy_to(F.ones((2, 5)), ctx=F.ctx())
    g.update_all(fn.copy_u('x', 'm'), fn.sum('m', 'y'))
    y = g.ndata['y']
    ans = np.zeros((2, 5))
    ans[1] = 5
    ans = F.copy_to(F.tensor(ans, dtype=F.dtype(y)), ctx=F.ctx())
    assert F.array_equal(y, ans)

nv-dlasalle's avatar
nv-dlasalle committed
1657
@parametrize_idtype
1658
def test_updates(idtype):
1659
1660
1661
1662
1663
1664
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1665
    g = create_test_heterograph(idtype)
1666
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1667
    g.nodes['user'].data['h'] = x
1668
1669
1670
1671
1672
1673
1674

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1675
        y = g.nodes['game'].data['y']
1676
1677
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1678
        del g.nodes['game'].data['y']
1679
1680

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1681
        y = g.nodes['game'].data['y']
1682
1683
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1684
        del g.nodes['game'].data['y']
1685
1686
1687

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1688
        y = g.nodes['game'].data['y']
1689
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1690
        del g.nodes['game'].data['y']
1691
1692
1693

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1694
        y = g.nodes['game'].data['y']
1695
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1696
1697
        del g.nodes['game'].data['y']

1698

nv-dlasalle's avatar
nv-dlasalle committed
1699
@parametrize_idtype
1700
1701
def test_backward(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1716

1717

nv-dlasalle's avatar
nv-dlasalle committed
1718
@parametrize_idtype
1719
def test_empty_heterograph(idtype):
1720
1721
1722
1723
1724
1725
1726
1727
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))

1728
    g = dgl.heterograph({('user', 'follows', 'user'): ([], [])}, idtype=idtype, device=F.ctx())
1729
1730
    assert g.idtype == idtype
    assert g.device == F.ctx()
1731
1732
1733
1734
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1735
1736
    g = dgl.heterograph({('user', 'plays', 'game'): ([], []), ('developer', 'develops', 'game'):
        ([0, 1], [0, 1])}, idtype=idtype, device=F.ctx())
1737
1738
    assert g.idtype == idtype
    assert g.device == F.ctx()
1739
1740
1741
1742
1743
1744
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

nv-dlasalle's avatar
nv-dlasalle committed
1745
@parametrize_idtype
1746
def test_types_in_function(idtype):
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

1779
1780
    g = dgl.heterograph({('user', 'follow', 'user'): ((0, 1), (1, 2))},
                        idtype=idtype, device=F.ctx())
1781
1782
1783
1784
1785
1786
1787
1788
1789
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

1790
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1791
1792
1793
1794
1795
1796
1797
1798
1799
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

nv-dlasalle's avatar
nv-dlasalle committed
1800
@parametrize_idtype
1801
def test_stack_reduce(idtype):
1802
1803
1804
1805
1806
1807
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1808
    g = create_test_heterograph(idtype)
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

nv-dlasalle's avatar
nv-dlasalle committed
1827
@parametrize_idtype
1828
def test_isolated_ntype(idtype):
1829
    g = dgl.heterograph({
1830
        ('A', 'AB', 'B'): ([0, 1, 2], [1, 2, 3])},
1831
1832
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1833
1834
1835
1836
1837
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
1838
        ('A', 'AC', 'C'): ([0, 1, 2], [1, 2, 3])},
1839
1840
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1841
1842
1843
1844
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1845
    G = dgl.graph(([0, 1, 2], [4, 5, 6]), num_nodes=11, idtype=idtype, device=F.ctx())
1846
1847
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
1848
    g = dgl.to_heterogeneous(G, ['A', 'B', 'C'], ['AB'])
1849
1850
1851
1852
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1853

nv-dlasalle's avatar
nv-dlasalle committed
1854
@parametrize_idtype
1855
def test_ismultigraph(idtype):
1856
1857
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5])},
                         {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1858
    assert g1.is_multigraph == False
1859
1860
    g2 = dgl.heterograph({('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
                         {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1861
    assert g2.is_multigraph == True
1862
    g3 = dgl.graph(((0, 1), (1, 2)), num_nodes=6, idtype=idtype, device=F.ctx())
1863
    assert g3.is_multigraph == False
1864
    g4 = dgl.graph(([0, 0, 1], [1, 1, 2]), num_nodes=6, idtype=idtype, device=F.ctx())
1865
    assert g4.is_multigraph == True
1866
1867
1868
1869
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1870
    assert g.is_multigraph == False
1871
1872
1873
1874
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
        {'A': 6, 'B': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1875
    assert g.is_multigraph == True
1876
1877
1878
1879
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 0, 1], [1, 1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1880
    assert g.is_multigraph == True
1881
1882
1883
1884
    g = dgl.heterograph({
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1885
1886
    assert g.is_multigraph == True

1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915

@parametrize_idtype
def test_graph_index_is_unibipartite(idtype):
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5])},
                         idtype=idtype, device=F.ctx())
    assert g1._graph.is_metagraph_unibipartite()

    # more complicated bipartite
    g2 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())
    assert g2._graph.is_metagraph_unibipartite()

    g3 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0]),
        ('A', 'AA', 'A'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
    assert not g3._graph.is_metagraph_unibipartite()

    g4 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('C', 'CA', 'A'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert not g4._graph.is_metagraph_unibipartite()


nv-dlasalle's avatar
nv-dlasalle committed
1916
@parametrize_idtype
1917
def test_bipartite(idtype):
1918
1919
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5])},
                         idtype=idtype, device=F.ctx())
1920
1921
1922
1923
1924
1925
1926
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1927
1928
1929
1930
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
    g2 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert g2.is_unibipartite
    assert g2.srctypes == ['A']
    assert set(g2.dsttypes) == {'B', 'C'}
    assert g2.number_of_nodes('A') == 2
    assert g2.number_of_nodes('B') == 6
    assert g2.number_of_nodes('C') == 1
    assert g2.number_of_src_nodes('A') == 2
    assert g2.number_of_src_nodes() == 2
    assert g2.number_of_dst_nodes('B') == 6
    assert g2.number_of_dst_nodes('C') == 1
    g2.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g2.srcnodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['SRC/A'].data['h'], g2.srcdata['h'])

    g3 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0]),
        ('A', 'AA', 'A'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
    assert not g3.is_unibipartite
1968

1969
1970
1971
1972
1973
1974
1975
    g4 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('C', 'CA', 'A'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert not g4.is_unibipartite

nv-dlasalle's avatar
nv-dlasalle committed
1976
@parametrize_idtype
1977
def test_dtype_cast(idtype):
1978
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1979
    assert g.idtype == idtype
1980
1981
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
1982
    if idtype == "int32":
1983
        g_cast = g.long()
1984
        assert g_cast.idtype == F.int64
1985
1986
    else:
        g_cast = g.int()
1987
1988
        assert g_cast.idtype == F.int32
    test_utils.check_graph_equal(g, g_cast, check_idtype=False)
1989

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
def test_float_cast():
    for t in [F.float16, F.float32, F.float64]:
        idtype = F.int32
        g = dgl.heterograph({
            ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 3], dtype=idtype),
                                        F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
            ('user', 'plays', 'game'): (F.tensor([0, 1, 1], dtype=idtype),
                                        F.tensor([0, 0, 1], dtype=idtype))},
            idtype=idtype, device=F.ctx())
        uvalues = [1, 2, 3, 4]
        gvalues = [5, 6]
        fvalues = [7, 8, 9, 10, 11, 12]
        pvalues = [13, 14, 15]
        dataNamesTypes = [
            ('a',F.float16),
            ('b',F.float32),
            ('c',F.float64),
            ('d',F.int32),
            ('e',F.int64)]
        for name,type in dataNamesTypes:
            g.nodes['user'].data[name] = F.copy_to(F.tensor(uvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.nodes['game'].data[name] = F.copy_to(F.tensor(gvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.edges['follows'].data[name] = F.copy_to(F.tensor(fvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.edges['plays'].data[name] = F.copy_to(F.tensor(pvalues, dtype=type), ctx=F.ctx())

        if t == F.float16:
            g = dgl.transforms.functional.to_half(g)
        if t == F.float32:
            g = dgl.transforms.functional.to_float(g)
        if t == F.float64:
            g = dgl.transforms.functional.to_double(g)

        for name,origType in dataNamesTypes:
            # integer tensors shouldn't be converted
            reqType = t if (origType in [F.float16,F.float32,F.float64]) else origType

            values = g.nodes['user'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(uvalues)
            assert F.allclose(values, F.tensor(uvalues), 0, 0)

            values = g.nodes['game'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(gvalues)
            assert F.allclose(values, F.tensor(gvalues), 0, 0)

            values = g.edges['follows'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(fvalues)
            assert F.allclose(values, F.tensor(fvalues), 0, 0)

            values = g.edges['plays'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(pvalues)
            assert F.allclose(values, F.tensor(pvalues), 0, 0)

nv-dlasalle's avatar
nv-dlasalle committed
2049
@parametrize_idtype
2050
def test_format(idtype):
2051
    # single relation
2052
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
2053
2054
2055
    assert g.formats()['created'] == ['coo']
    g1 = g.formats(['coo', 'csr', 'csc'])
    assert len(g1.formats()['created']) + len(g1.formats()['not created']) == 3
2056
    g1.create_formats_()
2057
2058
    assert len(g1.formats()['created']) == 3
    assert g.formats()['created'] == ['coo']
2059
2060
2061

    # multiple relation
    g = dgl.heterograph({
2062
2063
2064
2065
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
        }, idtype=idtype, device=F.ctx())
2066
2067
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
2068
    g1 = g.formats('csc')
2069
2070
2071
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
2072
2073
    assert g1.formats()['created'] == ['csc']
    assert len(g1.formats()['not created']) == 0
2074

2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
    # in_degrees
    g = dgl.rand_graph(100, 2340).to(F.ctx())
    ind_arr = []
    for vid in range(0, 100):
        ind_arr.append(g.in_degrees(vid))
    in_degrees = g.in_degrees()
    g = g.formats('coo')
    for vid in range(0, 100):
        assert g.in_degrees(vid) == ind_arr[vid]
    assert F.array_equal(in_degrees, g.in_degrees())

nv-dlasalle's avatar
nv-dlasalle committed
2086
@parametrize_idtype
2087
def test_edges_order(idtype):
2088
2089
2090
2091
    # (0, 2), (1, 2), (0, 1), (0, 1), (2, 1)
    g = dgl.graph((
        np.array([0, 1, 0, 0, 2]),
        np.array([2, 2, 1, 1, 1])
2092
    ), idtype=idtype, device=F.ctx())
2093

2094
    print(g.formats())
2095
    src, dst = g.all_edges(order='srcdst')
2096
2097
    assert F.array_equal(src, F.tensor([0, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(dst, F.tensor([1, 1, 2, 2, 1], dtype=idtype))
2098

nv-dlasalle's avatar
nv-dlasalle committed
2099
@parametrize_idtype
2100
def test_reverse(idtype):
2101
2102
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
2103
    }, idtype=idtype, device=F.ctx())
2104
    gidx = g._graph
2105
    r_gidx = gidx.reverse()
2106
2107
2108
2109
2110

    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2111
2112
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2113
2114

    # force to start with 'csr'
2115
2116
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2117
    r_gidx = gidx.reverse()
2118
2119
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
2120
2121
2122
2123
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2124
2125
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2126
2127

    # force to start with 'csc'
2128
2129
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2130
    r_gidx = gidx.reverse()
2131
2132
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2133
2134
2135
2136
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2137
2138
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2139
2140
2141
2142
2143

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
2144
        }, idtype=idtype, device=F.ctx())
2145
    gidx = g._graph
2146
2147
2148
2149
2150
2151
2152
2153
    r_gidx = gidx.reverse()

    # metagraph
    mg = gidx.metagraph
    r_mg = r_gidx.metagraph
    for etype in range(3):
        assert mg.find_edge(etype) == r_mg.find_edge(etype)[::-1]

2154
2155
2156
2157
2158
2159
2160
2161
2162
    # three node types and three edge types
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2163
2164
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2165
2166
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2167
2168
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2169
2170
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2171
2172
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2173
2174

    # force to start with 'csr'
2175
2176
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2177
    r_gidx = gidx.reverse()
2178
    # three node types and three edge types
2179
2180
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
2181
2182
2183
2184
2185
2186
2187
2188
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2189
2190
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2191
2192
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2193
2194
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2195
2196
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2197
2198
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2199
2200

    # force to start with 'csc'
2201
2202
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2203
    r_gidx = gidx.reverse()
2204
    # three node types and three edge types
2205
2206
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2207
2208
2209
2210
2211
2212
2213
2214
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2215
2216
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2217
2218
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2219
2220
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2221
2222
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2223
2224
2225
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)

nv-dlasalle's avatar
nv-dlasalle committed
2226
@parametrize_idtype
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
def test_clone(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())

    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    assert F.array_equal(g.ndata['h'], new_g.ndata['h'])
    assert F.array_equal(g.edata['h'], new_g.edata['h'])
    # data change
    new_g.ndata['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.ndata['h'], new_g.ndata['h']) == False)
    g.edata['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.edata['h'], new_g.edata['h']) == False)
    # graph structure change
    g.add_nodes(1)
    assert g.number_of_nodes() != new_g.number_of_nodes()
    new_g.add_edges(1, 1)
    assert g.number_of_edges() != new_g.number_of_edges()

    # zero data graph
2251
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2252
2253
2254
2255
2256
    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()

    # heterograph
2257
    g = create_test_heterograph3(idtype)
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    new_g = g.clone()
    assert g.number_of_nodes('user') == new_g.number_of_nodes('user')
    assert g.number_of_nodes('game') == new_g.number_of_nodes('game')
    assert g.number_of_nodes('developer') == new_g.number_of_nodes('developer')
    assert g.number_of_edges('plays') == new_g.number_of_edges('plays')
    assert g.number_of_edges('develops') == new_g.number_of_edges('develops')
    assert F.array_equal(g.nodes['user'].data['h'], new_g.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['game'].data['h'], new_g.nodes['game'].data['h'])
    assert F.array_equal(g.edges['plays'].data['h'], new_g.edges['plays'].data['h'])
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    u, v = g.edges(form='uv', order='eid', etype='plays')
    nu, nv = new_g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, nu)
    assert F.array_equal(v, nv)
    # graph structure change
    u = F.tensor([0, 4], dtype=idtype)
    v = F.tensor([2, 6], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert u.shape[0] != nu.shape[0]
    assert v.shape[0] != nv.shape[0]
    assert g.nodes['user'].data['h'].shape[0] != new_g.nodes['user'].data['h'].shape[0]
    assert g.nodes['game'].data['h'].shape[0] != new_g.nodes['game'].data['h'].shape[0]
    assert g.edges['plays'].data['h'].shape[0] != new_g.edges['plays'].data['h'].shape[0]


nv-dlasalle's avatar
nv-dlasalle committed
2286
@parametrize_idtype
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
2342
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
2357
2358
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
2385
2386
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
2399
2400
2401
2402
2403
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
2422
    g = create_test_heterograph3(idtype)
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g.add_edges(u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
2456
@parametrize_idtype
2457
2458
2459
2460
2461
2462
2463
2464
2465
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1)
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
2466
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
2467
2468
2469
2470
2471
2472
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
2473
2474
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2475
2476
2477
2478
2479
2480
2481
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g.add_nodes(2, ntype='game')
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
2482
    g = create_test_heterograph3(idtype)
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
    g.add_nodes(1, ntype='user')
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    g.add_nodes(0, ntype='developer')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet has error with (0,) shape tensor.")
nv-dlasalle's avatar
nv-dlasalle committed
2493
@parametrize_idtype
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g.remove_edges(1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
2537
2538
2539
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
2540
2541
2542
2543
2544
2545
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2546
2547
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has data
2559
2560
2561
2562
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2563
2564
2565
2566
2567
2568
2569
2570
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
2571
    g = create_test_heterograph3(idtype)
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g.remove_edges([0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
2586
@parametrize_idtype
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
2633
2634
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2635
2636
2637
2638
2639
2640
2641
2642
    n = 0
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2643
2644
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2645
2646
2647
2648
2649
2650
2651
2652
    n = [1]
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
2653
2654
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
    n = F.tensor([0], dtype=idtype)
    g.remove_nodes(n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
2665
    g = create_test_heterograph3(idtype)
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))
2683

nv-dlasalle's avatar
nv-dlasalle committed
2684
@parametrize_idtype
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
def test_frame(idtype):
    g = dgl.graph(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([0, 1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([0, 1, 2], dtype=idtype), ctx=F.ctx())

    # remove nodes
    sg = dgl.remove_nodes(g, [3])
    # check for lazy update
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    assert sg.ndata['h'].shape[0] == 3
    assert sg.edata['h'].shape[0] == 2
    # update after read
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, F.tensor([0, 1], dtype=idtype))

    ng = dgl.add_nodes(sg, 1)
    assert ng.ndata['h'].shape[0] == 4
    assert F.array_equal(ng._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2, 0], dtype=idtype))
    ng = dgl.add_edges(ng, [3], [1])
    assert ng.edata['h'].shape[0] == 3
    assert F.array_equal(ng._edge_frames[0]._columns['h'].storage, F.tensor([0, 1, 0], dtype=idtype))

    # multi level lazy update
    sg = dgl.remove_nodes(g, [3])
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    ssg = dgl.remove_nodes(sg, [1])
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(ssg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    # ssg is changed
    assert ssg.ndata['h'].shape[0] == 2
    assert ssg.edata['h'].shape[0] == 0
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, F.tensor([0, 2], dtype=idtype))
    # sg still in lazy model
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])

@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TensorFlow always create a new tensor")
@unittest.skipIf(F._default_context_str == 'cpu', reason="cpu do not have context change problem")
nv-dlasalle's avatar
nv-dlasalle committed
2725
@parametrize_idtype
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
def test_frame_device(idtype):
    g = dgl.graph(([0,1,2], [2,3,1]))
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1,2], dtype=idtype), ctx=F.cpu())
    g.ndata['hh'] = F.copy_to(F.ones((4,3), dtype=idtype), ctx=F.cpu())
    g.edata['h'] = F.copy_to(F.tensor([1,2,3], dtype=idtype), ctx=F.cpu())

    g = g.to(F.ctx())
    # lazy device copy
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    print(g.ndata['h'])
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(g._edge_frames[0]._columns['h'].storage) == F.cpu()

    # lazy device copy in subgraph
    sg = dgl.node_subgraph(g, [0,1,2])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['hh'])
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # back to cpu
    sg = sg.to(F.cpu())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['h'])
    print(sg.ndata['hh'])
    print(sg.edata['h'])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # set some field
    sg = sg.to(F.ctx())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    sg.ndata['h'][0] = 5
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # add nodes
    ng = dgl.add_nodes(sg, 3)
    assert F.context(ng._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(ng._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(ng._edge_frames[0]._columns['h'].storage) == F.cpu()

nv-dlasalle's avatar
nv-dlasalle committed
2776
@parametrize_idtype
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
def test_create_block(idtype):
    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 3

    block = dgl.create_block(([], []), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 0
    assert block.num_dst_nodes() == 0
    assert block.num_edges() == 0

    block = dgl.create_block(([], []), 3, 4, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 0

    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), 4, 5, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 4
    assert block.num_dst_nodes() == 5
    assert block.num_edges() == 3

    sx = F.randn((4, 5))
    dx = F.randn((5, 6))
    ex = F.randn((3, 4))
    block.srcdata['x'] = sx
    block.dstdata['x'] = dx
    block.edata['x'] = ex

    g = dgl.block_to_graph(block)
    assert g.num_src_nodes() == 4
    assert g.num_dst_nodes() == 5
    assert g.num_edges() == 3
    assert g.srcdata['x'] is sx
    assert g.dstdata['x'] is dx
    assert g.edata['x'] is ex

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 4
    assert block.num_src_nodes('B') == 4
    assert block.num_dst_nodes('B') == 3
    assert block.num_dst_nodes('A') == 5
    assert block.num_edges('AB') == 3
    assert block.num_edges('BA') == 2

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 0
    assert block.num_src_nodes('B') == 0
    assert block.num_dst_nodes('B') == 0
    assert block.num_dst_nodes('A') == 0
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges(('A', 'AB', 'B')) == 3
    assert block.num_edges(('B', 'BA', 'A')) == 2

    sax = F.randn((5, 3))
    sbx = F.randn((5, 4))
    dax = F.randn((6, 5))
    dbx = F.randn((4, 6))
    eabx = F.randn((3, 7))
    ebax = F.randn((2, 8))
    block.srcnodes['A'].data['x'] = sax
    block.srcnodes['B'].data['x'] = sbx
    block.dstnodes['A'].data['x'] = dax
    block.dstnodes['B'].data['x'] = dbx
    block.edges['AB'].data['x'] = eabx
    block.edges['BA'].data['x'] = ebax

    hg = dgl.block_to_graph(block)
    assert hg.num_nodes('A_src') == 5
    assert hg.num_nodes('B_src') == 5
    assert hg.num_nodes('A_dst') == 6
    assert hg.num_nodes('B_dst') == 4
    assert hg.num_edges(('A_src', 'AB', 'B_dst')) == 3
    assert hg.num_edges(('B_src', 'BA', 'A_dst')) == 2
    assert hg.nodes['A_src'].data['x'] is sax
    assert hg.nodes['B_src'].data['x'] is sbx
    assert hg.nodes['A_dst'].data['x'] is dax
    assert hg.nodes['B_dst'].data['x'] is dbx
    assert hg.edges['AB'].data['x'] is eabx
    assert hg.edges['BA'].data['x'] is ebax
2887

nv-dlasalle's avatar
nv-dlasalle committed
2888
@parametrize_idtype
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
@pytest.mark.parametrize('fmt', ['coo', 'csr', 'csc'])
def test_adj_sparse(idtype, fmt):
    if fmt == 'coo':
        A = ssp.random(10, 10, 0.2).tocoo()
        A.data = np.arange(20)
        row = F.tensor(A.row, idtype)
        col = F.tensor(A.col, idtype)
        g = dgl.graph((row, col))
    elif fmt == 'csr':
        A = ssp.random(10, 10, 0.2).tocsr()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csr', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)
    elif fmt == 'csc':
        A = ssp.random(10, 10, 0.2).tocsc()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csc', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)

    A_coo = A.tocoo()
    A_csr = A.tocsr()
    A_csc = A.tocsc()
    row, col = g.adj_sparse('coo')
    assert np.array_equal(F.asnumpy(row), A_coo.row)
    assert np.array_equal(F.asnumpy(col), A_coo.col)

    indptr, indices, eids = g.adj_sparse('csr')
    assert np.array_equal(F.asnumpy(indptr), A_csr.indptr)
    if fmt == 'csr':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csr.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csr.indices.dtype)
        indices_sorted_np[A_csr.data] = A_csr.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

    indptr, indices, eids = g.adj_sparse('csc')
    assert np.array_equal(F.asnumpy(indptr), A_csc.indptr)
    if fmt == 'csc':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csc.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csc.indices.dtype)
        indices_sorted_np[A_csc.data] = A_csc.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

2945

2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
def _test_forking_pickler_entry(g, q):
    q.put(g.formats())

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support spawning")
def test_forking_pickler():
    ctx = mp.get_context('spawn')
    g = dgl.graph(([0,1,2],[1,2,3]))
    g.create_formats_()
    q = ctx.Queue(1)
    proc = ctx.Process(target=_test_forking_pickler_entry, args=(g, q))
    proc.start()
    fmt = q.get()['created']
    proc.join()
    assert 'coo' in fmt
    assert 'csr' in fmt
    assert 'csc' in fmt


2964
if __name__ == '__main__':
2965
2966
2967
2968
2969
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
2970
    # test_view("int32")
2971
    # test_view1("int32")
2972
    # test_flatten(F.int32)
2973
2974
    # test_convert_bound()
    # test_convert()
2975
    # test_to_device("int32")
2976
    # test_transform("int32")
2977
2978
    # test_subgraph("int32")
    # test_subgraph_mask("int32")
2979
2980
2981
2982
2983
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
2984
    # test_empty_heterograph('int32')
2985
2986
2987
2988
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
2989
    # test_dtype_cast()
2990
    # test_float_cast()
2991
    # test_reverse("int32")
2992
    # test_format()
2993
2994
2995
2996
2997
    #test_add_edges(F.int32)
    #test_add_nodes(F.int32)
    #test_remove_edges(F.int32)
    #test_remove_nodes(F.int32)
    #test_clone(F.int32)
2998
2999
3000
    #test_frame(F.int32)
    #test_frame_device(F.int32)
    #test_empty_query(F.int32)
3001
    #test_create_block(F.int32)
3002
    pass