rowwise_pick.h 6.33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cpu/rowwise_pick.h
 * \brief Template implementation for rowwise pick operators.
 */
#ifndef DGL_ARRAY_CPU_ROWWISE_PICK_H_
#define DGL_ARRAY_CPU_ROWWISE_PICK_H_

#include <dgl/array.h>
#include <functional>

namespace dgl {
namespace aten {
namespace impl {

// User-defined function for picking elements from one row.
//
// The column indices of the given row are stored in
//   [col + off, col + off + len)
//
// Similarly, the data indices are stored in
//   [data + off, data + off + len)
// Data index pointer could be NULL, which means data[i] == i
//
// *ATTENTION*: This function will be invoked concurrently. Please make sure
// it is thread-safe.
//
// \param rowid The row to pick from.
// \param off Starting offset of this row.
// \param len NNZ of the row.
// \param col Pointer of the column indices.
// \param data Pointer of the data indices.
// \param out_idx Picked indices in [off, off + len).
template <typename IdxType>
using PickFn = std::function<void(
    IdxType rowid, IdxType off, IdxType len,
    const IdxType* col, const IdxType* data,
    IdxType* out_idx)>;

// Template for picking non-zero values row-wise. The implementation utilizes
// OpenMP parallelization on rows because each row performs computation independently.
template <typename IdxType>
COOMatrix CSRRowWisePick(CSRMatrix mat, IdArray rows,
                         int64_t num_picks, bool replace, PickFn<IdxType> pick_fn) {
  using namespace aten;
  const IdxType* indptr = static_cast<IdxType*>(mat.indptr->data);
  const IdxType* indices = static_cast<IdxType*>(mat.indices->data);
  const IdxType* data = CSRHasData(mat)? static_cast<IdxType*>(mat.data->data) : nullptr;
  const IdxType* rows_data = static_cast<IdxType*>(rows->data);
  const int64_t num_rows = rows->shape[0];
  const auto& ctx = mat.indptr->ctx;

  // To leverage OMP parallelization, we create two arrays to store
  // picked src and dst indices. Each array is of length num_rows * num_picks.
  // For rows whose nnz < num_picks, the indices are padded with -1.
  //
  // We check whether all the given rows
  // have at least num_picks number of nnz when replace is false.
  //
  // If the check holds, remove -1 elements by remove_if operation, which simply
  // moves valid elements to the head of arrays and create a view of the original
  // array. The implementation consumes a little extra memory than the actual requirement.
  //
  // Otherwise, directly use the row and col arrays to construct the result COO matrix.
65
66
67
  //
  // [02/29/2020 update]: OMP is disabled for now since batch-wise parallelism is more
  //   significant. (minjie)
68
69
70
71
72
73
74
75
76
77
78
  IdArray picked_row = Full(-1, num_rows * num_picks, sizeof(IdxType) * 8, ctx);
  IdArray picked_col = Full(-1, num_rows * num_picks, sizeof(IdxType) * 8, ctx);
  IdArray picked_idx = Full(-1, num_rows * num_picks, sizeof(IdxType) * 8, ctx);
  IdxType* picked_rdata = static_cast<IdxType*>(picked_row->data);
  IdxType* picked_cdata = static_cast<IdxType*>(picked_col->data);
  IdxType* picked_idata = static_cast<IdxType*>(picked_idx->data);

  bool all_has_fanout = true;
  if (replace) {
    all_has_fanout = true;
  } else {
79
#pragma omp parallel for reduction(&&:all_has_fanout)
80
81
82
83
84
85
86
    for (int64_t i = 0; i < num_rows; ++i) {
      const IdxType rid = rows_data[i];
      const IdxType len = indptr[rid + 1] - indptr[rid];
      all_has_fanout = all_has_fanout && (len >= num_picks);
    }
  }

87
#pragma omp parallel for
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  for (int64_t i = 0; i < num_rows; ++i) {
    const IdxType rid = rows_data[i];
    CHECK_LT(rid, mat.num_rows);
    const IdxType off = indptr[rid];
    const IdxType len = indptr[rid + 1] - off;
    if (len <= num_picks && !replace) {
      // nnz <= num_picks and w/o replacement, take all nnz
      for (int64_t j = 0; j < len; ++j) {
        picked_rdata[i * num_picks + j] = rid;
        picked_cdata[i * num_picks + j] = indices[off + j];
        picked_idata[i * num_picks + j] = data? data[off + j] : off + j;
      }
    } else {
      pick_fn(rid, off, len,
              indices, data,
              picked_idata + i * num_picks);
      for (int64_t j = 0; j < num_picks; ++j) {
        const IdxType picked = picked_idata[i * num_picks + j];
        picked_rdata[i * num_picks + j] = rid;
        picked_cdata[i * num_picks + j] = indices[picked];
        picked_idata[i * num_picks + j] = data? data[picked] : picked;
      }
    }
  }

  if (!all_has_fanout) {
    // correct the array by remove_if
    IdxType* new_row_end = std::remove_if(picked_rdata, picked_rdata + num_rows * num_picks,
                                          [] (IdxType i) { return i == -1; });
    IdxType* new_col_end = std::remove_if(picked_cdata, picked_cdata + num_rows * num_picks,
                                          [] (IdxType i) { return i == -1; });
    IdxType* new_idx_end = std::remove_if(picked_idata, picked_idata + num_rows * num_picks,
                                          [] (IdxType i) { return i == -1; });
    const int64_t new_len = (new_row_end - picked_rdata);
    CHECK_EQ(new_col_end - picked_cdata, new_len);
    CHECK_EQ(new_idx_end - picked_idata, new_len);
    picked_row = picked_row.CreateView({new_len}, picked_row->dtype);
    picked_col = picked_col.CreateView({new_len}, picked_col->dtype);
    picked_idx = picked_idx.CreateView({new_len}, picked_idx->dtype);
  }

  return COOMatrix(mat.num_rows, mat.num_cols,
                   picked_row, picked_col, picked_idx);
}

// Template for picking non-zero values row-wise. The implementation first slices
// out the corresponding rows and then converts it to CSR format. It then performs
// row-wise pick on the CSR matrix and rectifies the returned results.
template <typename IdxType>
COOMatrix COORowWisePick(COOMatrix mat, IdArray rows,
                         int64_t num_picks, bool replace, PickFn<IdxType> pick_fn) {
  using namespace aten;
  const auto& csr = COOToCSR(COOSliceRows(mat, rows));
  const IdArray new_rows = Range(0, rows->shape[0], rows->dtype.bits, rows->ctx);
  const auto& picked = CSRRowWisePick<IdxType>(csr, new_rows, num_picks, replace, pick_fn);
  return COOMatrix(mat.num_rows, mat.num_cols,
                   IndexSelect(rows, picked.row),  // map the row index to the correct one
                   picked.col,
                   picked.data);
}

}  // namespace impl
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_CPU_ROWWISE_PICK_H_