test_dist_optim.py 4.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
import socket
from scipy import sparse as spsp
import torch as th

from dgl.distributed import DistGraphServer, DistGraph
from dgl.distributed import partition_graph, load_partition_book
import multiprocessing as mp
from dgl import function as fn
import backend as F
import unittest
import pickle
import random
19
from dgl.distributed import DistEmbedding
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from dgl.distributed.optim import SparseAdagrad, SparseAdam

def create_random_graph(n):
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
    return dgl.from_scipy(arr)

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

def prepare_dist():
    ip_config = open("optim_ip_config.txt", "w")
    ip_addr = get_local_usable_addr()
    ip_config.write('{}\n'.format(ip_addr))
    ip_config.close()

def run_server(graph_name, server_id, server_count, num_clients, shared_mem):
    g = DistGraphServer(server_id, "optim_ip_config.txt", num_clients, server_count,
                        '/tmp/dist_graph/{}.json'.format(graph_name),
                        disable_shared_mem=not shared_mem)
    print('start server', server_id)
    g.start()

def initializer(shape, dtype):
    arr = th.zeros(shape, dtype=dtype)
    th.manual_seed(0)
    th.nn.init.uniform_(arr, 0, 1.0)
    return arr

def run_client(graph_name, cli_id, part_id, server_count):
    device=F.ctx()
    time.sleep(5)
    os.environ['DGL_NUM_SERVER'] = str(server_count)
    dgl.distributed.initialize("optim_ip_config.txt")
    gpb, graph_name, _, _ = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                                part_id, None)
    g = DistGraph(graph_name, gpb=gpb)
    policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
    num_nodes = g.number_of_nodes()
    emb_dim = 4
81
82
    dgl_emb = DistEmbedding(num_nodes, emb_dim, name='optim', init_func=initializer, part_policy=policy)
    dgl_emb_zero = DistEmbedding(num_nodes, emb_dim, name='optim-zero', init_func=initializer, part_policy=policy)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    dgl_adam = SparseAdam(params=[dgl_emb, dgl_emb_zero], lr=0.01)
    dgl_adam._world_size = 1
    dgl_adam._rank = 0

    torch_emb = th.nn.Embedding(num_nodes, emb_dim, sparse=True)
    torch_emb_zero = th.nn.Embedding(num_nodes, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb_zero.weight, 0, 1.0)
    torch_adam = th.optim.SparseAdam(
        list(torch_emb.parameters()) + list(torch_emb_zero.parameters()), lr=0.01)

    labels = th.ones((4,)).long()
    idx = th.randint(0, num_nodes, size=(4,))
    dgl_value = dgl_emb(idx, device).to(th.device('cpu'))
    torch_value = torch_emb(idx)
    torch_adam.zero_grad()
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    torch_loss.backward()
    torch_adam.step()

    dgl_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    dgl_loss.backward()
    dgl_adam.step()

    assert F.allclose(dgl_emb.weight[0 : num_nodes//2], torch_emb.weight[0 : num_nodes//2])

def check_sparse_adam(num_trainer=1, shared_mem=True):
    prepare_dist()
    g = create_random_graph(2000)
    num_servers = num_trainer
    num_clients = num_trainer
    num_parts = 1

    graph_name = 'dist_graph_test'
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
    ctx = mp.get_context('spawn')
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, num_servers,
                                                 num_clients, shared_mem))
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(num_clients):
        print('start client', cli_id)
        p = ctx.Process(target=run_client, args=(graph_name, cli_id, 0, num_servers))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()

    for p in serv_ps:
        p.join()

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
def test_sparse_opt():
    os.environ['DGL_DIST_MODE'] = 'distributed'
    check_sparse_adam(1, True)
    check_sparse_adam(1, False)

if __name__ == '__main__':
    os.makedirs('/tmp/dist_graph', exist_ok=True)
    test_sparse_opt()