train_sampling.py 7.61 KB
Newer Older
lt610's avatar
lt610 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import os
import time
import numpy as np
import torch
import torch.nn.functional as F
from sampler import SAINTNodeSampler, SAINTEdgeSampler, SAINTRandomWalkSampler
from modules import GCNNet
from utils import Logger, evaluate, save_log_dir, load_data


def main(args):

    multilabel_data = set(['ppi'])
    multilabel = args.dataset in multilabel_data

    # load and preprocess dataset
    data = load_data(args, multilabel)
    g = data.g
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
    labels = g.ndata['label']

    train_nid = data.train_nid

    in_feats = g.ndata['feat'].shape[1]
    n_classes = data.num_classes
    n_nodes = g.num_nodes()
    n_edges = g.num_edges()

    n_train_samples = train_mask.int().sum().item()
    n_val_samples = val_mask.int().sum().item()
    n_test_samples = test_mask.int().sum().item()

    print("""----Data statistics------'
    #Nodes %d
    #Edges %d
    #Classes/Labels (multi binary labels) %d
    #Train samples %d
    #Val samples %d
    #Test samples %d""" %
          (n_nodes, n_edges, n_classes,
           n_train_samples,
           n_val_samples,
           n_test_samples))
    # load sampler
    if args.sampler == "node":
        subg_iter = SAINTNodeSampler(args.node_budget, args.dataset, g,
                                     train_nid, args.num_repeat)
    elif args.sampler == "edge":
        subg_iter = SAINTEdgeSampler(args.edge_budget, args.dataset, g,
                                     train_nid, args.num_repeat)
    elif args.sampler == "rw":
        subg_iter = SAINTRandomWalkSampler(args.num_roots, args.length, args.dataset, g,
                                            train_nid, args.num_repeat)

    # set device for dataset tensors
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
        g = g.to(args.gpu)

    print('labels shape:', g.ndata['label'].shape)
    print("features shape:", g.ndata['feat'].shape)

    model = GCNNet(
        in_dim=in_feats,
        hid_dim=args.n_hidden,
        out_dim=n_classes,
        arch=args.arch,
        dropout=args.dropout,
        batch_norm=not args.no_batch_norm,
        aggr=args.aggr
    )

    if cuda:
        model.cuda()

    # logger and so on
    log_dir = save_log_dir(args)
    logger = Logger(os.path.join(log_dir, 'loggings'))
    logger.write(args)

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr)

    # set train_nids to cuda tensor
    if cuda:
        train_nid = torch.from_numpy(train_nid).cuda()
        print("GPU memory allocated before training(MB)",
              torch.cuda.memory_allocated(device=train_nid.device) / 1024 / 1024)
    start_time = time.time()
    best_f1 = -1

    for epoch in range(args.n_epochs):
        for j, subg in enumerate(subg_iter):
            # sync with upper level training graph
            if cuda:
                subg = subg.to(torch.cuda.current_device())
            model.train()
            # forward
            pred = model(subg)
            batch_labels = subg.ndata['label']

            if multilabel:
                loss = F.binary_cross_entropy_with_logits(pred, batch_labels, reduction='sum',
                                                          weight=subg.ndata['l_n'].unsqueeze(1))
            else:
                loss = F.cross_entropy(pred, batch_labels, reduction='none')
                loss = (subg.ndata['l_n'] * loss).sum()

            optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm(model.parameters(), 5)
            optimizer.step()
            if j == len(subg_iter) - 1:
                print(f"epoch:{epoch+1}/{args.n_epochs}, Iteration {j+1}/"
                      f"{len(subg_iter)}:training loss", loss.item())

        # evaluate
        if epoch % args.val_every == 0:
            val_f1_mic, val_f1_mac = evaluate(
                model, g, labels, val_mask, multilabel)
            print(
                "Val F1-mic {:.4f}, Val F1-mac {:.4f}".format(val_f1_mic, val_f1_mac))
            if val_f1_mic > best_f1:
                best_f1 = val_f1_mic
                print('new best val f1:', best_f1)
                torch.save(model.state_dict(), os.path.join(
                    log_dir, 'best_model.pkl'))

    end_time = time.time()
    print(f'training using time {end_time - start_time}')

    # test
    if args.use_val:
        model.load_state_dict(torch.load(os.path.join(
            log_dir, 'best_model.pkl')))
    test_f1_mic, test_f1_mac = evaluate(
        model, g, labels, test_mask, multilabel)
    print("Test F1-mic {:.4f}, Test F1-mac {:.4f}".format(test_f1_mic, test_f1_mac))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GraphSAINT')
    # data source params
    parser.add_argument("--dataset", type=str, choices=['ppi', 'flickr'], default='ppi',
                        help="Name of dataset.")

    # cuda params
    parser.add_argument("--gpu", type=int, default=-1,
                        help="GPU index. Default: -1, using CPU.")

    # sampler params
    parser.add_argument("--sampler", type=str, default="node", choices=['node', 'edge', 'rw'],
                        help="Type of sampler")
    parser.add_argument("--node-budget", type=int, default=6000,
                        help="Expected number of sampled nodes when using node sampler")
    parser.add_argument("--edge-budget", type=int, default=4000,
                        help="Expected number of sampled edges when using edge sampler")
    parser.add_argument("--num-roots", type=int, default=3000,
                        help="Expected number of sampled root nodes when using random walk sampler")
    parser.add_argument("--length", type=int, default=2,
                        help="The length of random walk when using random walk sampler")
    parser.add_argument("--num-repeat", type=int, default=50,
                        help="Number of times of repeating sampling one node to estimate edge / node probability")

    # model params
    parser.add_argument("--n-hidden", type=int, default=512,
                        help="Number of hidden gcn units")
    parser.add_argument("--arch", type=str, default="1-0-1-0",
                        help="Network architecture. 1 means an order-1 layer (self feature plus 1-hop neighbor "
                             "feature), and 0 means an order-0 layer (self feature only)")
    parser.add_argument("--dropout", type=float, default=0,
                        help="Dropout rate")
    parser.add_argument("--no-batch-norm", action='store_true',
                        help="Whether to use batch norm")
    parser.add_argument("--aggr", type=str, default="concat", choices=['mean', 'concat'],
                        help="How to aggregate the self feature and neighbor features")

    # training params
    parser.add_argument("--n-epochs", type=int, default=100,
                        help="Number of training epochs")
    parser.add_argument("--lr", type=float, default=0.01,
                        help="Learning rate")
    parser.add_argument("--val-every", type=int, default=1,
                        help="Frequency of evaluation on the validation set in number of epochs")
    parser.add_argument("--use-val", action='store_true',
                        help="whether to use validated best model to test")
    parser.add_argument("--log-dir", type=str, default='none',
                        help="Log file will be saved to log/{dataset}/{log_dir}")

    args = parser.parse_args()

    print(args)

    main(args)