dataloader.py 2.62 KB
Newer Older
kitaev-chen's avatar
kitaev-chen committed
1
2
3
4
5
6
7
8
9
10
11
"""
PyTorch compatible dataloader
"""


import math
import numpy as np
import torch
from torch.utils.data.sampler import SubsetRandomSampler
from sklearn.model_selection import StratifiedKFold
import dgl
12
from dgl.dataloading import GraphDataLoader
kitaev-chen's avatar
kitaev-chen committed
13
14


15
class GINDataLoader():
kitaev-chen's avatar
kitaev-chen committed
16
17
18
19
    def __init__(self,
                 dataset,
                 batch_size,
                 device,
20
                 collate_fn=None,
kitaev-chen's avatar
kitaev-chen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
                 seed=0,
                 shuffle=True,
                 split_name='fold10',
                 fold_idx=0,
                 split_ratio=0.7):

        self.shuffle = shuffle
        self.seed = seed
        self.kwargs = {'pin_memory': True} if 'cuda' in device.type else {}

        labels = [l for _, l in dataset]

        if split_name == 'fold10':
            train_idx, valid_idx = self._split_fold10(
                labels, fold_idx, seed, shuffle)
        elif split_name == 'rand':
            train_idx, valid_idx = self._split_rand(
                labels, split_ratio, seed, shuffle)
        else:
            raise NotImplementedError()

        train_sampler = SubsetRandomSampler(train_idx)
        valid_sampler = SubsetRandomSampler(valid_idx)

45
        self.train_loader = GraphDataLoader(
kitaev-chen's avatar
kitaev-chen committed
46
            dataset, sampler=train_sampler,
47
            batch_size=batch_size, collate_fn=collate_fn, **self.kwargs)
48
        self.valid_loader = GraphDataLoader(
kitaev-chen's avatar
kitaev-chen committed
49
            dataset, sampler=valid_sampler,
50
            batch_size=batch_size, collate_fn=collate_fn, **self.kwargs)
kitaev-chen's avatar
kitaev-chen committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    def train_valid_loader(self):
        return self.train_loader, self.valid_loader

    def _split_fold10(self, labels, fold_idx=0, seed=0, shuffle=True):
        ''' 10 flod '''
        assert 0 <= fold_idx and fold_idx < 10, print(
            "fold_idx must be from 0 to 9.")

        skf = StratifiedKFold(n_splits=10, shuffle=shuffle, random_state=seed)
        idx_list = []
        for idx in skf.split(np.zeros(len(labels)), labels):    # split(x, y)
            idx_list.append(idx)
        train_idx, valid_idx = idx_list[fold_idx]

        print(
            "train_set : test_set = %d : %d",
            len(train_idx), len(valid_idx))

        return train_idx, valid_idx

    def _split_rand(self, labels, split_ratio=0.7, seed=0, shuffle=True):
        num_entries = len(labels)
        indices = list(range(num_entries))
        np.random.seed(seed)
        np.random.shuffle(indices)
        split = int(math.floor(split_ratio * num_entries))
        train_idx, valid_idx = indices[:split], indices[split:]

        print(
            "train_set : test_set = %d : %d",
            len(train_idx), len(valid_idx))

        return train_idx, valid_idx