test_sampler.py 31.5 KB
Newer Older
1
import backend as F
Da Zheng's avatar
Da Zheng committed
2
3
4
5
import numpy as np
import scipy as sp
import dgl
from dgl import utils
VoVAllen's avatar
VoVAllen committed
6
import unittest
7
from numpy.testing import assert_array_equal
Da Zheng's avatar
Da Zheng committed
8

9
10
np.random.seed(42)

Da Zheng's avatar
Da Zheng committed
11
12
13
14
def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
    return dgl.DGLGraph(arr, readonly=True)

15
16
17
def test_create_full():
    g = generate_rand_graph(100)
    full_nf = dgl.contrib.sampling.sampler.create_full_nodeflow(g, 5)
Da Zheng's avatar
Da Zheng committed
18
    assert full_nf.number_of_nodes() == g.number_of_nodes() * 6
19
20
    assert full_nf.number_of_edges() == g.number_of_edges() * 5

Da Zheng's avatar
Da Zheng committed
21
22
23
def test_1neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
24
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
Da Zheng's avatar
Da Zheng committed
25
            g, 1, g.number_of_nodes(), neighbor_type='in', num_workers=4)):
26
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
27
        assert len(seed_ids) == 1
28
        src, dst, eid = g.in_edges(seed_ids, form='all')
Da Zheng's avatar
Da Zheng committed
29
30
        assert subg.number_of_nodes() == len(src) + 1
        assert subg.number_of_edges() == len(src)
Da Zheng's avatar
Da Zheng committed
31

Da Zheng's avatar
Da Zheng committed
32
33
34
        assert seed_ids == subg.layer_parent_nid(-1)
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        assert F.array_equal(child_src, subg.layer_nid(0))
Da Zheng's avatar
Da Zheng committed
35

Da Zheng's avatar
Da Zheng committed
36
37
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
38
39

def is_sorted(arr):
40
    return np.sum(np.sort(arr) == arr, 0) == len(arr)
Da Zheng's avatar
Da Zheng committed
41
42

def verify_subgraph(g, subg, seed_id):
Da Zheng's avatar
Da Zheng committed
43
44
45
46
    seed_id = F.asnumpy(seed_id)
    seeds = F.asnumpy(subg.map_to_parent_nid(subg.layer_nid(-1)))
    assert seed_id in seeds
    child_seed = F.asnumpy(subg.layer_nid(-1))[seeds == seed_id]
47
    src, dst, eid = g.in_edges(seed_id, form='all')
Da Zheng's avatar
Da Zheng committed
48
49
    child_src, child_dst, child_eid = subg.in_edges(child_seed, form='all')

50
    child_src = F.asnumpy(child_src)
Da Zheng's avatar
Da Zheng committed
51
52
53
54
55
    # We don't allow duplicate elements in the neighbor list.
    assert(len(np.unique(child_src)) == len(child_src))
    # The neighbor list also needs to be sorted.
    assert(is_sorted(child_src))

Da Zheng's avatar
Da Zheng committed
56
    # a neighbor in the subgraph must also exist in parent graph.
57
    src = F.asnumpy(src)
Da Zheng's avatar
Da Zheng committed
58
    for i in subg.map_to_parent_nid(child_src):
59
        assert F.asnumpy(i) in src
Da Zheng's avatar
Da Zheng committed
60
61
62
63

def test_1neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
64
65
66
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
67
68
69
70
71
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

72
73
74
def test_prefetch_neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
75
76
77
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4, prefetch=True):
        seed_ids = subg.layer_parent_nid(-1)
78
79
80
81
82
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

Da Zheng's avatar
Da Zheng committed
83
84
85
def test_10neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
Da Zheng's avatar
Da Zheng committed
86
87
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, g.number_of_nodes(),
                                                     neighbor_type='in', num_workers=4):
88
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
89
        assert F.array_equal(seed_ids, subg.map_to_parent_nid(subg.layer_nid(-1)))
Da Zheng's avatar
Da Zheng committed
90

Da Zheng's avatar
Da Zheng committed
91
92
93
94
        src, dst, eid = g.in_edges(seed_ids, form='all')
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
95
96
97

def check_10neighbor_sampler(g, seeds):
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
98
99
100
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, 5, neighbor_type='in',
                                                     num_workers=4, seed_nodes=seeds):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
101
102
103
104
105
106
107
108
109
110
111
        assert subg.number_of_nodes() <= 6 * len(seed_ids)
        assert subg.number_of_edges() <= 5 * len(seed_ids)
        for seed_id in seed_ids:
            verify_subgraph(g, subg, seed_id)

def test_10neighbor_sampler():
    g = generate_rand_graph(100)
    check_10neighbor_sampler(g, None)
    check_10neighbor_sampler(g, seeds=np.unique(np.random.randint(0, g.number_of_nodes(),
                                                                  size=int(g.number_of_nodes() / 10))))

112
def _test_layer_sampler(prefetch=False):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    g = generate_rand_graph(100)
    nid = g.nodes()
    src, dst, eid = g.all_edges(form='all', order='eid')
    n_batches = 5
    batch_size = 50
    seed_batches = [np.sort(np.random.choice(F.asnumpy(nid), batch_size, replace=False))
                    for i in range(n_batches)]
    seed_nodes = np.hstack(seed_batches)
    layer_sizes = [50] * 3
    LayerSampler = getattr(dgl.contrib.sampling, 'LayerSampler')
    sampler = LayerSampler(g, batch_size, layer_sizes, 'in',
                           seed_nodes=seed_nodes, num_workers=4, prefetch=prefetch)
    for sub_g in sampler:
        assert all(sub_g.layer_size(i) < size for i, size in enumerate(layer_sizes))
        sub_nid = F.arange(0, sub_g.number_of_nodes())
        assert all(np.all(np.isin(F.asnumpy(sub_g.layer_nid(i)), F.asnumpy(sub_nid)))
                   for i in range(sub_g.num_layers))
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_nid(sub_nid)),
                              F.asnumpy(nid)))
        sub_eid = F.arange(0, sub_g.number_of_edges())
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_eid(sub_eid)),
                              F.asnumpy(eid)))
        assert any(np.all(np.sort(F.asnumpy(sub_g.layer_parent_nid(-1))) == seed_batch)
                   for seed_batch in seed_batches)

        sub_src, sub_dst = sub_g.all_edges(order='eid')
        for i in range(sub_g.num_blocks):
            block_eid = sub_g.block_eid(i)
VoVAllen's avatar
VoVAllen committed
141
142
            block_src = sub_g.map_to_parent_nid(F.gather_row(sub_src, block_eid))
            block_dst = sub_g.map_to_parent_nid(F.gather_row(sub_dst, block_eid))
143
144

            block_parent_eid = sub_g.block_parent_eid(i)
VoVAllen's avatar
VoVAllen committed
145
146
            block_parent_src = F.gather_row(src, block_parent_eid)
            block_parent_dst = F.gather_row(dst, block_parent_eid)
147
148
149
150
151
152
153
154
155
156

            assert np.all(F.asnumpy(block_src == block_parent_src))

        n_layers = sub_g.num_layers
        sub_n = sub_g.number_of_nodes()
        assert sum(F.shape(sub_g.layer_nid(i))[0] for i in range(n_layers)) == sub_n
        n_blocks = sub_g.num_blocks
        sub_m = sub_g.number_of_edges()
        assert sum(F.shape(sub_g.block_eid(i))[0] for i in range(n_blocks)) == sub_m

Da Zheng's avatar
Da Zheng committed
157
158
159
160
def test_layer_sampler():
    _test_layer_sampler()
    _test_layer_sampler(prefetch=True)

VoVAllen's avatar
VoVAllen committed
161
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="Error occured when multiprocessing")
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def test_nonuniform_neighbor_sampler():
    # Construct a graph with
    # (1) A path (0, 1, ..., 99) with weight 1
    # (2) A bunch of random edges with weight 0.
    edges = []
    for i in range(99):
        edges.append((i, i + 1))
    for i in range(1000):
        edge = (np.random.randint(100), np.random.randint(100))
        if edge not in edges:
            edges.append(edge)
    src, dst = zip(*edges)
    g = dgl.DGLGraph()
    g.add_nodes(100)
    g.add_edges(src, dst)
    g.readonly()

    g.edata['w'] = F.cat([
        F.ones((99,), F.float64, F.cpu()),
        F.zeros((len(edges) - 99,), F.float64, F.cpu())], 0)

    # Test 1-neighbor NodeFlow with 99 as target node.
    # The generated NodeFlow should only contain node i on layer i.
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'in', transition_prob='w', seed_nodes=[99])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
192
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == i
193
194
195
196
197
198
199
200
201

    # Test the reverse direction
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'out', transition_prob='w', seed_nodes=[0])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
202
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == 99 - i
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def test_setseed():
    g = generate_rand_graph(100)

    nids = []

    dgl.random.seed(42)
    for subg in dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1):
        nids.append(
            tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3)))

    # reinitialize
    dgl.random.seed(42)
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1)):
        item = tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3))
        assert item == nids[i]

    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=4)):
        pass

226
227
228
229
230
231
232
233
234
235
236
237
238
def check_head_tail(g):
    lsrc, ldst, leid = g.all_edges(form='all', order='eid')

    lsrc = np.unique(F.asnumpy(lsrc))
    head_nid = np.unique(F.asnumpy(g.head_nid))
    assert len(head_nid) == len(g.head_nid)
    np.testing.assert_equal(lsrc, head_nid)

    ldst = np.unique(F.asnumpy(ldst))
    tail_nid = np.unique(F.asnumpy(g.tail_nid))
    assert len(tail_nid) == len(g.tail_nid)
    np.testing.assert_equal(tail_nid, ldst)

VoVAllen's avatar
VoVAllen committed
239

Da Zheng's avatar
Da Zheng committed
240
def check_negative_sampler(mode, exclude_positive, neg_size):
241
    g = generate_rand_graph(100)
242
    num_edges = g.number_of_edges()
243
    etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64)
VoVAllen's avatar
VoVAllen committed
244
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())
245
246
247
248
249
250
251
252

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))

253
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
254
    # Test the homogeneous graph.
255

256
    batch_size = 50
257
    total_samples = 0
258
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
259
                                            negative_mode=mode,
260
                                            reset=False,
261
                                            neg_sample_size=neg_size,
Da Zheng's avatar
Da Zheng committed
262
263
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
264
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
265
266
267
        assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)),
                           F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc),
                                                F.gather_row(pos_edges.parent_nid, pos_ldst))))
268
269

        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
270

VoVAllen's avatar
VoVAllen committed
271
272
273
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
274
        for i in range(len(neg_eid)):
VoVAllen's avatar
VoVAllen committed
275
276
            neg_d = int(F.asnumpy(neg_dst)[i])
            neg_e = int(F.asnumpy(neg_eid)[i])
277
            assert (neg_d, neg_e) in pos_map
278
279
280
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

281
        check_head_tail(neg_edges)
VoVAllen's avatar
VoVAllen committed
282
283
        pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid)
        neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid)
284
285
286
287
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

Da Zheng's avatar
Da Zheng committed
288
        exist = neg_edges.edata['false_neg']
289
290
291
292
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)
293
        total_samples += batch_size
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    assert total_samples <= num_edges

    # check replacement = True
    # with reset = False (default setting)
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=True,
                                            reset=False,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = False
    # with reset = False (default setting)
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=False,
                                            reset=False,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = True
    # with reset = True
    total_samples = 0
    max_samples = 2 * num_edges
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=True,
                                            reset=True,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) <= batch_size
        total_samples += len(pos_leid)
        if (total_samples >= max_samples):
            break
    assert total_samples >= max_samples

    # check replacement = False
    # with reset = True
    total_samples = 0
    max_samples = 2 * num_edges
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=False,
                                            reset=True,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) <= batch_size
        total_samples += len(pos_leid)
358
359
        if (total_samples >= max_samples):
            break
360
    assert total_samples >= max_samples
361

362
    # Test the knowledge graph.
363
364
    total_samples = 0
    for _, neg_edges in EdgeSampler(g, batch_size,
365
                                    negative_mode=mode,
366
                                    reset=False,
367
368
                                    neg_sample_size=neg_size,
                                    exclude_positive=exclude_positive,
Da Zheng's avatar
Da Zheng committed
369
370
                                    relations=g.edata['etype'],
                                    return_false_neg=True):
371
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
372
373
374
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
Da Zheng's avatar
Da Zheng committed
375
        exists = neg_edges.edata['false_neg']
VoVAllen's avatar
VoVAllen committed
376
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
377
378
379
380
381
382
383
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
384
        total_samples += batch_size
385
    assert total_samples <= num_edges
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

def check_weighted_negative_sampler(mode, exclude_positive, neg_size):
    g = generate_rand_graph(100)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu())
    node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu())
    etype = np.random.randint(0, 10, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')

    # Correctness check
    # Test the homogeneous graph.
    batch_size = 50
407
    # Test the knowledge graph with edge weight provied.
408
409
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
410
                                            reset=False,
411
412
413
414
415
416
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
417
418
419
        assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)),
                           F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc),
                                                F.gather_row(pos_edges.parent_nid, pos_ldst))))
420
421
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')

VoVAllen's avatar
VoVAllen committed
422
423
424
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
425
426
427
428
429
430
431
432
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst[i]))
            neg_e = int(F.asnumpy(neg_eid[i]))
            assert (neg_d, neg_e) in pos_map
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

        check_head_tail(neg_edges)
VoVAllen's avatar
VoVAllen committed
433
434
        pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid)
        neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid)
435
436
437
438
439
440
441
442
443
444
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

        exist = neg_edges.edata['false_neg']
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)
        total_samples += batch_size
445
    assert total_samples <= num_edges
446
447
448
449

    # Test the knowledge graph with edge weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
450
                                            reset=False,
451
452
453
454
455
456
457
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
458
459
460
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
461
        exists = neg_edges.edata['false_neg']
VoVAllen's avatar
VoVAllen committed
462
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
463
464
465
466
467
468
469
470
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
471
    assert total_samples <= num_edges
472
473
474
475

    # Test the knowledge graph with edge/node weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
476
                                            reset=False,
477
478
479
480
481
482
483
484
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
485
486
487
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
488
        exists = neg_edges.edata['false_neg']
VoVAllen's avatar
VoVAllen committed
489
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
490
491
492
493
494
495
496
497
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    assert total_samples <= num_edges

    # check replacement = True with pos edges no-uniform sample
    # with reset = False
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=True,
                                            reset=False,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = True with pos edges no-uniform sample
    # with reset = True
    total_samples = 0
    max_samples = 4 * num_edges
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=True,
                                            reset=True,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
        if total_samples >= max_samples:
            break
    assert total_samples == max_samples

    # check replacement = False with pos/neg edges no-uniform sample
    # reset = False
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=False,
                                            reset=False,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
    assert total_samples == num_edges

    # check replacement = False with pos/neg edges no-uniform sample
    # reset = True
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            replacement=False,
                                            reset=True,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert len(pos_leid) == batch_size
        total_samples += len(pos_leid)
        if total_samples >= max_samples:
570
            break
571
    assert total_samples == max_samples
572
573
574
575
576
577
578
579
580
581
582
583
584
585

    # Check Rate
    dgl.random.seed(0)
    g = generate_rand_graph(1000)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu())
    edge_weight[0] = F.sum(edge_weight, dim=0)
    node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu())
    node_weight[-1] = F.sum(node_weight, dim=0) / 200
    etype = np.random.randint(0, 20, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    # Test w/o node weight.
586
    max_samples = num_edges // 5
587
    total_samples = 0
588
    # Test the knowledge graph with edge weight provied.
589
590
591
    edge_sampled = np.full((num_edges,), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes,), 0, dtype=np.int32)
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
592
                                            replacement=True,
593
594
595
596
597
598
599
600
601
602
603
604
605
606
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
            neg_src = neg_edges.parent_nid[neg_lsrc]
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
            neg_dst = neg_edges.parent_nid[neg_ldst]
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
607
        np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1)
608
        total_samples += batch_size
609
        if total_samples > max_samples:
610
            break
611

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate_0 = node_sampled[0] / node_sampled.sum()
    node_tail_half_cnt = node_sampled[node_sampled.shape[0] // 2:-1].sum()
    node_rate_tail_half = node_tail_half_cnt / node_sampled.sum()
    assert node_rate_0 < 0.02
    assert np.allclose(node_rate_tail_half, 0.5, atol=0.02)

    # Test the knowledge graph with edge/node weight provied.
    edge_sampled = np.full((num_edges,), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes,), 0, dtype=np.int32)
628
    total_samples = 0
629
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
630
                                            replacement=True,
631
632
633
634
635
636
637
638
639
640
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
VoVAllen's avatar
VoVAllen committed
641
            neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
642
643
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
VoVAllen's avatar
VoVAllen committed
644
            neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
645
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
646
        np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1)
647
        total_samples += batch_size
648
        if total_samples > max_samples:
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
            break

    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate = node_sampled[-1] / node_sampled.sum()
    node_rate_a = np.average(node_sampled[:50]) / node_sampled.sum()
    node_rate_b = np.average(node_sampled[50:100]) / node_sampled.sum()
    # As neg sampling does not contain duplicate nodes,
    # this test takes some acceptable variation on the sample rate.
    assert np.allclose(node_rate, node_rate_a * 5, atol=0.002)
    assert np.allclose(node_rate_a, node_rate_b, atol=0.0002)
665

VoVAllen's avatar
VoVAllen committed
666
667

@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support item assignment")
668
def test_negative_sampler():
Da Zheng's avatar
Da Zheng committed
669
670
671
    check_negative_sampler('PBG-head', False, 10)
    check_negative_sampler('head', True, 10)
    check_negative_sampler('head', False, 10)
672
673
674
    check_weighted_negative_sampler('PBG-head', False, 10)
    check_weighted_negative_sampler('head', True, 10)
    check_weighted_negative_sampler('head', False, 10)
Da Zheng's avatar
Da Zheng committed
675
676
    #disable this check for now. It might take too long time.
    #check_negative_sampler('head', False, 100)
677
678


Da Zheng's avatar
Da Zheng committed
679
if __name__ == '__main__':
680
    test_create_full()
Da Zheng's avatar
Da Zheng committed
681
682
683
684
    test_1neighbor_sampler_all()
    test_10neighbor_sampler_all()
    test_1neighbor_sampler()
    test_10neighbor_sampler()
Da Zheng's avatar
Da Zheng committed
685
    test_layer_sampler()
686
    test_nonuniform_neighbor_sampler()
687
    test_setseed()
688
    test_negative_sampler()