"vscode:/vscode.git/clone" did not exist on "51fda1439fe76cba5b2d59f0db8f4f10e1cd6b4f"
link_predict.py 9.24 KB
Newer Older
Lingfan Yu's avatar
Lingfan Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/MichSchli/RelationPrediction

Difference compared to MichSchli/RelationPrediction
* report raw metrics instead of filtered metrics
"""

import argparse
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
from dgl.contrib.data import load_data

from layers import RGCNBlockLayer as RGCNLayer
from model import BaseRGCN

import utils

class EmbeddingLayer(nn.Module):
    def __init__(self, num_nodes, h_dim):
        super(EmbeddingLayer, self).__init__()
        self.embedding = torch.nn.Embedding(num_nodes, h_dim)

    def forward(self, g):
        node_id = g.ndata['id'].squeeze()
        g.ndata['h'] = self.embedding(node_id)

class RGCN(BaseRGCN):
    def build_input_layer(self):
        return EmbeddingLayer(self.num_nodes, self.h_dim)

    def build_hidden_layer(self, idx):
        act = F.relu if idx < self.num_hidden_layers - 1 else None
        return RGCNLayer(self.h_dim, self.h_dim, self.num_rels, self.num_bases,
                         activation=act, self_loop=True, dropout=self.dropout)

class LinkPredict(nn.Module):
    def __init__(self, in_dim, h_dim, num_rels, num_bases=-1,
                 num_hidden_layers=1, dropout=0, use_cuda=False, reg_param=0):
        super(LinkPredict, self).__init__()
        self.rgcn = RGCN(in_dim, h_dim, h_dim, num_rels * 2, num_bases,
                         num_hidden_layers, dropout, use_cuda)
        self.reg_param = reg_param
        self.w_relation = nn.Parameter(torch.Tensor(num_rels, h_dim))
        nn.init.xavier_uniform_(self.w_relation,
                                gain=nn.init.calculate_gain('relu'))

    def calc_score(self, embedding, triplets):
        # DistMult
        s = embedding[triplets[:,0]]
        r = self.w_relation[triplets[:,1]]
        o = embedding[triplets[:,2]]
        score = torch.sum(s * r * o, dim=1)
        return score

    def forward(self, g):
        return self.rgcn.forward(g)

    def evaluate(self, g):
        # get embedding and relation weight without grad
        embedding = self.forward(g)
        return embedding, self.w_relation

    def regularization_loss(self, embedding):
        return torch.mean(embedding.pow(2)) + torch.mean(self.w_relation.pow(2))

    def get_loss(self, g, triplets, labels):
        # triplets is a list of data samples (positive and negative)
        # each row in the triplets is a 3-tuple of (source, relation, destination)
        embedding = self.forward(g)
        score = self.calc_score(embedding, triplets)
        predict_loss = F.binary_cross_entropy_with_logits(score, labels)
        reg_loss = self.regularization_loss(embedding)
        return predict_loss + self.reg_param * reg_loss


def main(args):
    # load graph data
    data = load_data(args.dataset)
    num_nodes = data.num_nodes
    train_data = data.train
    valid_data = data.valid
    test_data = data.test
    num_rels = data.num_rels

    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)

    # create model
    model = LinkPredict(num_nodes,
                        args.n_hidden,
                        num_rels,
                        num_bases=args.n_bases,
                        num_hidden_layers=args.n_layers,
                        dropout=args.dropout,
                        use_cuda=use_cuda,
                        reg_param=args.regularization)

    # validation and testing triplets
    valid_data = torch.LongTensor(valid_data)
    test_data = torch.LongTensor(test_data)

    # build test graph
    test_graph, test_rel, test_norm = utils.build_test_graph(
        num_nodes, num_rels, train_data)
    test_deg = test_graph.in_degrees(
                range(test_graph.number_of_nodes())).float().view(-1,1)
    test_node_id = torch.arange(0, num_nodes, dtype=torch.long).view(-1, 1)
    test_rel = torch.from_numpy(test_rel).view(-1, 1)
    test_norm = torch.from_numpy(test_norm).view(-1, 1)
    test_graph.ndata.update({'id': test_node_id, 'norm': test_norm})
    test_graph.edata['type'] = test_rel

    if use_cuda:
        model.cuda()

    # build adj list and calculate degrees for sampling
    adj_list, degrees = utils.get_adj_and_degrees(num_nodes, train_data)

    # optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    model_state_file = 'model_state.pth'
    forward_time = []
    backward_time = []

    # training loop
    print("start training...")

    epoch = 0
    best_mrr = 0
    while True:
        model.train()
        epoch += 1

        # perform edge neighborhood sampling to generate training graph and data
        g, node_id, edge_type, node_norm, data, labels = \
            utils.generate_sampled_graph_and_labels(
                train_data, args.graph_batch_size, args.graph_split_size,
                num_rels, adj_list, degrees, args.negative_sample)
        print("Done edge sampling")

        # set node/edge feature
        node_id = torch.from_numpy(node_id).view(-1, 1)
152
        edge_type = torch.from_numpy(edge_type)
Lingfan Yu's avatar
Lingfan Yu committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        node_norm = torch.from_numpy(node_norm).view(-1, 1)
        data, labels = torch.from_numpy(data), torch.from_numpy(labels)
        deg = g.in_degrees(range(g.number_of_nodes())).float().view(-1, 1)
        if use_cuda:
            node_id, deg = node_id.cuda(), deg.cuda()
            edge_type, node_norm = edge_type.cuda(), node_norm.cuda()
            data, labels = data.cuda(), labels.cuda()
        g.ndata.update({'id': node_id, 'norm': node_norm})
        g.edata['type'] = edge_type

        t0 = time.time()
        loss = model.get_loss(g, data, labels)
        t1 = time.time()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_norm) # clip gradients
        optimizer.step()
        t2 = time.time()

        forward_time.append(t1 - t0)
        backward_time.append(t2 - t1)
        print("Epoch {:04d} | Loss {:.4f} | Best MRR {:.4f} | Forward {:.4f}s | Backward {:.4f}s".
              format(epoch, loss.item(), best_mrr, forward_time[-1], backward_time[-1]))

        optimizer.zero_grad()

        # validation
        if epoch % args.evaluate_every == 0:
            # perform validation on CPU because full graph is too large
            if use_cuda:
                model.cpu()
            model.eval()
            print("start eval")
            mrr = utils.evaluate(test_graph, model, valid_data, num_nodes,
                                 hits=[1, 3, 10], eval_bz=args.eval_batch_size)
            # save best model
            if mrr < best_mrr:
                if epoch >= args.n_epochs:
                    break
            else:
                best_mrr = mrr
                torch.save({'state_dict': model.state_dict(), 'epoch': epoch},
                           model_state_file)
            if use_cuda:
                model.cuda()

    print("training done")
    print("Mean forward time: {:4f}s".format(np.mean(forward_time)))
    print("Mean Backward time: {:4f}s".format(np.mean(backward_time)))

    print("\nstart testing:")
    # use best model checkpoint
    checkpoint = torch.load(model_state_file)
    if use_cuda:
        model.cpu() # test on CPU
    model.eval()
    model.load_state_dict(checkpoint['state_dict'])
    print("Using best epoch: {}".format(checkpoint['epoch']))
    utils.evaluate(test_graph, model, test_data, num_nodes, hits=[1, 3, 10],
                   eval_bz=args.eval_batch_size)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0.2,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=500,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=100,
            help="number of weight blocks for each relation")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("--n-epochs", type=int, default=6000,
            help="number of minimum training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--eval-batch-size", type=int, default=500,
            help="batch size when evaluating")
    parser.add_argument("--regularization", type=float, default=0.01,
            help="regularization weight")
    parser.add_argument("--grad-norm", type=float, default=1.0,
            help="norm to clip gradient to")
    parser.add_argument("--graph-batch-size", type=int, default=30000,
            help="number of edges to sample in each iteration")
    parser.add_argument("--graph-split-size", type=float, default=0.5,
            help="portion of edges used as positive sample")
    parser.add_argument("--negative-sample", type=int, default=10,
            help="number of negative samples per positive sample")
    parser.add_argument("--evaluate-every", type=int, default=500,
brett koonce's avatar
brett koonce committed
245
            help="perform evaluation every n epochs")
Lingfan Yu's avatar
Lingfan Yu committed
246
247
248
249
250

    args = parser.parse_args()
    print(args)
    main(args)