train_sampling.py 8.86 KB
Newer Older
1
2
3
4
5
6
7
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
8
from torch.utils.data import DataLoader
9
10
11
12
13
14
15
16
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from _thread import start_new_thread
from functools import wraps
from dgl.data import RedditDataset
import tqdm
17
import traceback
18

19
from load_graph import load_reddit, load_ogb, inductive_split
20

21
22
23
24
25
26
27
28
29
30
31
32
33
class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
34
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
35
        for i in range(1, n_layers - 1):
36
37
38
39
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation
40
41
42

    def forward(self, blocks, x):
        h = x
43
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
44
            h = layer(block, h)
45
46
47
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
48
49
50
51
52
53
54
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.
55

56
57
58
59
60
61
62
63
64
65
66
        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)

67
68
69
70
71
72
73
74
75
76
77
78
            sampler = dgl.sampling.MultiLayerNeighborSampler([None])
            dataloader = dgl.sampling.NodeDataLoader(
                g,
                th.arange(g.number_of_nodes()),
                sampler,
                batch_size=args.batch_size,
                shuffle=True,
                drop_last=False,
                num_workers=args.num_workers)

            for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
                block = blocks[0]
79

80
                block = block.int().to(device)
81
                h = x[input_nodes].to(device)
82
                h = layer(block, h)
83
84
85
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)
86

87
                y[output_nodes] = h.cpu()
88
89
90
91
92
93
94
95

            x = y
        return y

def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
96
    labels = labels.long()
97
98
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

99
def evaluate(model, g, inputs, labels, val_nid, batch_size, device):
100
    """
101
    Evaluate the model on the validation set specified by ``val_nid``.
102
103
104
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
105
    val_nid : the node Ids for validation.
106
107
108
109
110
111
112
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
113
    return compute_acc(pred[val_nid], labels[val_nid])
114

115
def load_subtensor(g, seeds, input_nodes, device):
116
117
118
    """
    Copys features and labels of a set of nodes onto GPU.
    """
119
    batch_inputs = g.ndata['features'][input_nodes].to(device)
120
    batch_labels = g.ndata['labels'][seeds].to(device)
121
122
123
    return batch_inputs, batch_labels

#### Entry point
124
def run(args, device, data):
125
    # Unpack data
126
127
128
129
    in_feats, n_classes, train_g, val_g, test_g = data
    train_nid = th.nonzero(train_g.ndata['train_mask'], as_tuple=True)[0]
    val_nid = th.nonzero(val_g.ndata['val_mask'], as_tuple=True)[0]
    test_nid = th.nonzero(~(test_g.ndata['train_mask'] | test_g.ndata['val_mask']), as_tuple=True)[0]
130

131
    # Create PyTorch DataLoader for constructing blocks
132
133
134
    sampler = dgl.sampling.MultiLayerNeighborSampler(
        [int(fanout) for fanout in args.fan_out.split(',')])
    dataloader = dgl.sampling.NodeDataLoader(
135
        train_g,
136
137
        train_nid,
        sampler,
138
139
140
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
141
        num_workers=args.num_workers)
142
143

    # Define model and optimizer
144
145
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
    model = model.to(device)
146
    loss_fcn = nn.CrossEntropyLoss()
147
    loss_fcn = loss_fcn.to(device)
148
149
150
151
152
153
154
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
        tic = time.time()
155
156
157

        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
158
        tic_step = time.time()
159
        for step, (input_nodes, seeds, blocks) in enumerate(dataloader):
160
            # Load the input features as well as output labels
161
            batch_inputs, batch_labels = load_subtensor(train_g, seeds, input_nodes, device)
162
            blocks = [block.int().to(device) for block in blocks]
163
164
165
166
167
168
169
170

            # Compute loss and prediction
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

171
172
            iter_tput.append(len(seeds) / (time.time() - tic_step))
            if step % args.log_every == 0:
173
                acc = compute_acc(batch_pred, batch_labels)
174
                gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
175
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format(
176
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc))
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
177
            tic_step = time.time()
178
179

        toc = time.time()
180
181
182
183
        print('Epoch Time(s): {:.4f}'.format(toc - tic))
        if epoch >= 5:
            avg += toc - tic
        if epoch % args.eval_every == 0 and epoch != 0:
184
            eval_acc = evaluate(model, val_g, val_g.ndata['features'], val_g.ndata['labels'], val_nid, args.batch_size, device)
185
            print('Eval Acc {:.4f}'.format(eval_acc))
186
187
            test_acc = evaluate(model, test_g, test_g.ndata['features'], test_g.ndata['labels'], test_nid, args.batch_size, device)
            print('Test Acc: {:.4f}'.format(test_acc))
188
189

    print('Avg epoch time: {}'.format(avg / (epoch - 4)))
190
191
192

if __name__ == '__main__':
    argparser = argparse.ArgumentParser("multi-gpu training")
193
194
    argparser.add_argument('--gpu', type=int, default=0,
        help="GPU device ID. Use -1 for CPU training")
195
    argparser.add_argument('--dataset', type=str, default='reddit')
196
197
198
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
199
    argparser.add_argument('--fan-out', type=str, default='10,25')
200
201
202
203
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
204
    argparser.add_argument('--dropout', type=float, default=0.5)
205
    argparser.add_argument('--num-workers', type=int, default=4,
206
        help="Number of sampling processes. Use 0 for no extra process.")
207
208
    argparser.add_argument('--inductive', action='store_true',
        help="Inductive learning setting")
209
    args = argparser.parse_args()
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
210

211
212
213
214
    if args.gpu >= 0:
        device = th.device('cuda:%d' % args.gpu)
    else:
        device = th.device('cpu')
215

216
217
218
219
220
221
    if args.dataset == 'reddit':
        g, n_classes = load_reddit()
    elif args.dataset == 'ogb-product':
        g, n_classes = load_ogb('ogbn-products')
    else:
        raise Exception('unknown dataset')
222

223
    in_feats = g.ndata['features'].shape[1]
224
225
226
227
228
229

    if args.inductive:
        train_g, val_g, test_g = inductive_split(g)
    else:
        train_g = val_g = test_g = g

230
231
232
    train_g.create_format_()
    val_g.create_format_()
    test_g.create_format_()
233
    # Pack data
234
    data = in_feats, n_classes, train_g, val_g, test_g
235

236
    run(args, device, data)