test_sampler.py 24.5 KB
Newer Older
1
import backend as F
Da Zheng's avatar
Da Zheng committed
2
3
4
5
import numpy as np
import scipy as sp
import dgl
from dgl import utils
VoVAllen's avatar
VoVAllen committed
6
import unittest
7
from numpy.testing import assert_array_equal
Da Zheng's avatar
Da Zheng committed
8

9
10
np.random.seed(42)

Da Zheng's avatar
Da Zheng committed
11
12
13
14
def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
    return dgl.DGLGraph(arr, readonly=True)

15
16
17
def test_create_full():
    g = generate_rand_graph(100)
    full_nf = dgl.contrib.sampling.sampler.create_full_nodeflow(g, 5)
Da Zheng's avatar
Da Zheng committed
18
    assert full_nf.number_of_nodes() == g.number_of_nodes() * 6
19
20
    assert full_nf.number_of_edges() == g.number_of_edges() * 5

Da Zheng's avatar
Da Zheng committed
21
22
23
def test_1neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
24
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
Da Zheng's avatar
Da Zheng committed
25
            g, 1, g.number_of_nodes(), neighbor_type='in', num_workers=4)):
26
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
27
        assert len(seed_ids) == 1
28
        src, dst, eid = g.in_edges(seed_ids, form='all')
Da Zheng's avatar
Da Zheng committed
29
30
        assert subg.number_of_nodes() == len(src) + 1
        assert subg.number_of_edges() == len(src)
Da Zheng's avatar
Da Zheng committed
31

Da Zheng's avatar
Da Zheng committed
32
33
34
        assert seed_ids == subg.layer_parent_nid(-1)
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        assert F.array_equal(child_src, subg.layer_nid(0))
Da Zheng's avatar
Da Zheng committed
35

Da Zheng's avatar
Da Zheng committed
36
37
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
38
39

def is_sorted(arr):
40
    return np.sum(np.sort(arr) == arr, 0) == len(arr)
Da Zheng's avatar
Da Zheng committed
41
42

def verify_subgraph(g, subg, seed_id):
Da Zheng's avatar
Da Zheng committed
43
44
45
46
    seed_id = F.asnumpy(seed_id)
    seeds = F.asnumpy(subg.map_to_parent_nid(subg.layer_nid(-1)))
    assert seed_id in seeds
    child_seed = F.asnumpy(subg.layer_nid(-1))[seeds == seed_id]
47
    src, dst, eid = g.in_edges(seed_id, form='all')
Da Zheng's avatar
Da Zheng committed
48
49
    child_src, child_dst, child_eid = subg.in_edges(child_seed, form='all')

50
    child_src = F.asnumpy(child_src)
Da Zheng's avatar
Da Zheng committed
51
52
53
54
55
    # We don't allow duplicate elements in the neighbor list.
    assert(len(np.unique(child_src)) == len(child_src))
    # The neighbor list also needs to be sorted.
    assert(is_sorted(child_src))

Da Zheng's avatar
Da Zheng committed
56
    # a neighbor in the subgraph must also exist in parent graph.
57
    src = F.asnumpy(src)
Da Zheng's avatar
Da Zheng committed
58
    for i in subg.map_to_parent_nid(child_src):
59
        assert F.asnumpy(i) in src
Da Zheng's avatar
Da Zheng committed
60
61
62
63

def test_1neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
64
65
66
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
67
68
69
70
71
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

72
73
74
def test_prefetch_neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
75
76
77
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4, prefetch=True):
        seed_ids = subg.layer_parent_nid(-1)
78
79
80
81
82
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

Da Zheng's avatar
Da Zheng committed
83
84
85
def test_10neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
Da Zheng's avatar
Da Zheng committed
86
87
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, g.number_of_nodes(),
                                                     neighbor_type='in', num_workers=4):
88
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
89
        assert F.array_equal(seed_ids, subg.map_to_parent_nid(subg.layer_nid(-1)))
Da Zheng's avatar
Da Zheng committed
90

Da Zheng's avatar
Da Zheng committed
91
92
93
94
        src, dst, eid = g.in_edges(seed_ids, form='all')
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
95
96
97

def check_10neighbor_sampler(g, seeds):
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
98
99
100
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, 5, neighbor_type='in',
                                                     num_workers=4, seed_nodes=seeds):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
101
102
103
104
105
106
107
108
109
110
111
        assert subg.number_of_nodes() <= 6 * len(seed_ids)
        assert subg.number_of_edges() <= 5 * len(seed_ids)
        for seed_id in seed_ids:
            verify_subgraph(g, subg, seed_id)

def test_10neighbor_sampler():
    g = generate_rand_graph(100)
    check_10neighbor_sampler(g, None)
    check_10neighbor_sampler(g, seeds=np.unique(np.random.randint(0, g.number_of_nodes(),
                                                                  size=int(g.number_of_nodes() / 10))))

112
def _test_layer_sampler(prefetch=False):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    g = generate_rand_graph(100)
    nid = g.nodes()
    src, dst, eid = g.all_edges(form='all', order='eid')
    n_batches = 5
    batch_size = 50
    seed_batches = [np.sort(np.random.choice(F.asnumpy(nid), batch_size, replace=False))
                    for i in range(n_batches)]
    seed_nodes = np.hstack(seed_batches)
    layer_sizes = [50] * 3
    LayerSampler = getattr(dgl.contrib.sampling, 'LayerSampler')
    sampler = LayerSampler(g, batch_size, layer_sizes, 'in',
                           seed_nodes=seed_nodes, num_workers=4, prefetch=prefetch)
    for sub_g in sampler:
        assert all(sub_g.layer_size(i) < size for i, size in enumerate(layer_sizes))
        sub_nid = F.arange(0, sub_g.number_of_nodes())
        assert all(np.all(np.isin(F.asnumpy(sub_g.layer_nid(i)), F.asnumpy(sub_nid)))
                   for i in range(sub_g.num_layers))
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_nid(sub_nid)),
                              F.asnumpy(nid)))
        sub_eid = F.arange(0, sub_g.number_of_edges())
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_eid(sub_eid)),
                              F.asnumpy(eid)))
        assert any(np.all(np.sort(F.asnumpy(sub_g.layer_parent_nid(-1))) == seed_batch)
                   for seed_batch in seed_batches)

        sub_src, sub_dst = sub_g.all_edges(order='eid')
        for i in range(sub_g.num_blocks):
            block_eid = sub_g.block_eid(i)
VoVAllen's avatar
VoVAllen committed
141
142
            block_src = sub_g.map_to_parent_nid(F.gather_row(sub_src, block_eid))
            block_dst = sub_g.map_to_parent_nid(F.gather_row(sub_dst, block_eid))
143
144

            block_parent_eid = sub_g.block_parent_eid(i)
VoVAllen's avatar
VoVAllen committed
145
146
            block_parent_src = F.gather_row(src, block_parent_eid)
            block_parent_dst = F.gather_row(dst, block_parent_eid)
147
148
149
150
151
152
153
154
155
156

            assert np.all(F.asnumpy(block_src == block_parent_src))

        n_layers = sub_g.num_layers
        sub_n = sub_g.number_of_nodes()
        assert sum(F.shape(sub_g.layer_nid(i))[0] for i in range(n_layers)) == sub_n
        n_blocks = sub_g.num_blocks
        sub_m = sub_g.number_of_edges()
        assert sum(F.shape(sub_g.block_eid(i))[0] for i in range(n_blocks)) == sub_m

Da Zheng's avatar
Da Zheng committed
157
158
159
160
def test_layer_sampler():
    _test_layer_sampler()
    _test_layer_sampler(prefetch=True)

VoVAllen's avatar
VoVAllen committed
161
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="Error occured when multiprocessing")
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def test_nonuniform_neighbor_sampler():
    # Construct a graph with
    # (1) A path (0, 1, ..., 99) with weight 1
    # (2) A bunch of random edges with weight 0.
    edges = []
    for i in range(99):
        edges.append((i, i + 1))
    for i in range(1000):
        edge = (np.random.randint(100), np.random.randint(100))
        if edge not in edges:
            edges.append(edge)
    src, dst = zip(*edges)
    g = dgl.DGLGraph()
    g.add_nodes(100)
    g.add_edges(src, dst)
    g.readonly()

    g.edata['w'] = F.cat([
        F.ones((99,), F.float64, F.cpu()),
        F.zeros((len(edges) - 99,), F.float64, F.cpu())], 0)

    # Test 1-neighbor NodeFlow with 99 as target node.
    # The generated NodeFlow should only contain node i on layer i.
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'in', transition_prob='w', seed_nodes=[99])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
192
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == i
193
194
195
196
197
198
199
200
201

    # Test the reverse direction
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'out', transition_prob='w', seed_nodes=[0])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
202
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == 99 - i
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def test_setseed():
    g = generate_rand_graph(100)

    nids = []

    dgl.random.seed(42)
    for subg in dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1):
        nids.append(
            tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3)))

    # reinitialize
    dgl.random.seed(42)
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1)):
        item = tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3))
        assert item == nids[i]

    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=4)):
        pass

226
227
228
229
230
231
232
233
234
235
236
237
238
def check_head_tail(g):
    lsrc, ldst, leid = g.all_edges(form='all', order='eid')

    lsrc = np.unique(F.asnumpy(lsrc))
    head_nid = np.unique(F.asnumpy(g.head_nid))
    assert len(head_nid) == len(g.head_nid)
    np.testing.assert_equal(lsrc, head_nid)

    ldst = np.unique(F.asnumpy(ldst))
    tail_nid = np.unique(F.asnumpy(g.tail_nid))
    assert len(tail_nid) == len(g.tail_nid)
    np.testing.assert_equal(tail_nid, ldst)

VoVAllen's avatar
VoVAllen committed
239

Da Zheng's avatar
Da Zheng committed
240
def check_negative_sampler(mode, exclude_positive, neg_size):
241
    g = generate_rand_graph(100)
242
    num_edges = g.number_of_edges()
243
    etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64)
VoVAllen's avatar
VoVAllen committed
244
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())
245
246
247
248
249
250
251
252

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))

253
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
254
    # Test the homogeneous graph.
255
256
257
258
    total_samples = 0
    batch_size = 50
    max_samples = num_edges
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
259
260
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
Da Zheng's avatar
Da Zheng committed
261
262
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
263
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
264
265
266
        assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)),
                           F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc),
                                                F.gather_row(pos_edges.parent_nid, pos_ldst))))
267
268

        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
269

VoVAllen's avatar
VoVAllen committed
270
271
272
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
273
        for i in range(len(neg_eid)):
VoVAllen's avatar
VoVAllen committed
274
275
            neg_d = int(F.asnumpy(neg_dst)[i])
            neg_e = int(F.asnumpy(neg_eid)[i])
276
            assert (neg_d, neg_e) in pos_map
277
278
279
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

280
        check_head_tail(neg_edges)
VoVAllen's avatar
VoVAllen committed
281
282
        pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid)
        neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid)
283
284
285
286
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

Da Zheng's avatar
Da Zheng committed
287
        exist = neg_edges.edata['false_neg']
288
289
290
291
292
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)

293
294
295
296
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

297
    # Test the knowledge graph.
298
299
    total_samples = 0
    for _, neg_edges in EdgeSampler(g, batch_size,
300
301
302
                                    negative_mode=mode,
                                    neg_sample_size=neg_size,
                                    exclude_positive=exclude_positive,
Da Zheng's avatar
Da Zheng committed
303
304
                                    relations=g.edata['etype'],
                                    return_false_neg=True):
305
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
306
307
308
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
Da Zheng's avatar
Da Zheng committed
309
        exists = neg_edges.edata['false_neg']
VoVAllen's avatar
VoVAllen committed
310
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
311
312
313
314
315
316
317
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

def check_weighted_negative_sampler(mode, exclude_positive, neg_size):
    g = generate_rand_graph(100)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu())
    node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu())
    etype = np.random.randint(0, 10, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')

    # Correctness check
    # Test the homogeneous graph.
    batch_size = 50
    total_samples = 0
    max_samples = num_edges
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
351
352
353
        assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)),
                           F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc),
                                                F.gather_row(pos_edges.parent_nid, pos_ldst))))
354
355
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')

VoVAllen's avatar
VoVAllen committed
356
357
358
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
359
360
361
362
363
364
365
366
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst[i]))
            neg_e = int(F.asnumpy(neg_eid[i]))
            assert (neg_d, neg_e) in pos_map
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

        check_head_tail(neg_edges)
VoVAllen's avatar
VoVAllen committed
367
368
        pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid)
        neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

        exist = neg_edges.edata['false_neg']
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Test the knowledge graph with edge weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
392
393
394
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
395
        exists = neg_edges.edata['false_neg']
VoVAllen's avatar
VoVAllen committed
396
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Test the knowledge graph with edge/node weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
419
420
421
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
422
        exists = neg_edges.edata['false_neg']
VoVAllen's avatar
VoVAllen committed
423
        neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Check Rate
    dgl.random.seed(0)
    g = generate_rand_graph(1000)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu())
    edge_weight[0] = F.sum(edge_weight, dim=0)
    node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu())
    node_weight[-1] = F.sum(node_weight, dim=0) / 200
    etype = np.random.randint(0, 20, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    # Test w/o node weight.
    max_samples = num_edges / 5
    # Test the knowledge graph with edge weight provied.
    total_samples = 0
    edge_sampled = np.full((num_edges,), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes,), 0, dtype=np.int32)
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
            neg_src = neg_edges.parent_nid[neg_lsrc]
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
            neg_dst = neg_edges.parent_nid[neg_ldst]
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
VoVAllen's avatar
VoVAllen committed
468
        np.add.at(edge_sampled, F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)), 1)
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

        total_samples += batch_size
        if (total_samples >= max_samples):
            break
    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate_0 = node_sampled[0] / node_sampled.sum()
    node_tail_half_cnt = node_sampled[node_sampled.shape[0] // 2:-1].sum()
    node_rate_tail_half = node_tail_half_cnt / node_sampled.sum()
    assert node_rate_0 < 0.02
    assert np.allclose(node_rate_tail_half, 0.5, atol=0.02)

    # Test the knowledge graph with edge/node weight provied.
    total_samples = 0
    edge_sampled = np.full((num_edges,), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes,), 0, dtype=np.int32)
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
VoVAllen's avatar
VoVAllen committed
501
            neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
502
503
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
VoVAllen's avatar
VoVAllen committed
504
            neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
505
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
VoVAllen's avatar
VoVAllen committed
506
        np.add.at(edge_sampled, F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)), 1)
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate = node_sampled[-1] / node_sampled.sum()
    node_rate_a = np.average(node_sampled[:50]) / node_sampled.sum()
    node_rate_b = np.average(node_sampled[50:100]) / node_sampled.sum()
    # As neg sampling does not contain duplicate nodes,
    # this test takes some acceptable variation on the sample rate.
    assert np.allclose(node_rate, node_rate_a * 5, atol=0.002)
    assert np.allclose(node_rate_a, node_rate_b, atol=0.0002)
526

VoVAllen's avatar
VoVAllen committed
527
528

@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support item assignment")
529
def test_negative_sampler():
Da Zheng's avatar
Da Zheng committed
530
531
532
    check_negative_sampler('PBG-head', False, 10)
    check_negative_sampler('head', True, 10)
    check_negative_sampler('head', False, 10)
533
534
535
    check_weighted_negative_sampler('PBG-head', False, 10)
    check_weighted_negative_sampler('head', True, 10)
    check_weighted_negative_sampler('head', False, 10)
Da Zheng's avatar
Da Zheng committed
536
537
    #disable this check for now. It might take too long time.
    #check_negative_sampler('head', False, 100)
538
539


Da Zheng's avatar
Da Zheng committed
540
if __name__ == '__main__':
541
    test_create_full()
Da Zheng's avatar
Da Zheng committed
542
543
544
545
    test_1neighbor_sampler_all()
    test_10neighbor_sampler_all()
    test_1neighbor_sampler()
    test_10neighbor_sampler()
Da Zheng's avatar
Da Zheng committed
546
    test_layer_sampler()
547
    test_nonuniform_neighbor_sampler()
548
    test_setseed()
549
    test_negative_sampler()