test_apply_edges_hetero.py 5.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
import unittest, pytest
from dgl import DGLError
import test_utils
from test_utils import parametrize_dtype, get_cases
from scipy.sparse import rand

rfuncs = {'sum': fn.sum, 'max': fn.max, 'min': fn.min, 'mean': fn.mean}
fill_value = {'sum': 0, 'max': float("-inf")}
feat_size = 2

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

    g = dgl.heterograph({
        ('user', 'follows', 'user'):  ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 1, 1], [0, 0, 1]),
        ('developer', 'develops', 'game'): ([0, 1, 0], [0, 1, 1]),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g


@parametrize_dtype
def test_unary_copy_u(idtype):
    def _test(mfunc, rfunc):

        g = create_test_heterograph(idtype)

        x1 = F.randn((g.num_nodes('user'), feat_size))
        x2 = F.randn((g.num_nodes('developer'), feat_size))

        F.attach_grad(x1)
        F.attach_grad(x2)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2

        #################################################################
        #  apply_edges() is called for each etype in a loop
        #################################################################

        with F.record_grad():
            [g.apply_edges(fn.copy_u('h', 'm'), etype = rel)
                for rel in g.canonical_etypes]
            r1 = g['plays'].edata['m']
            F.backward(r1, F.ones(r1.shape))
            n_grad1 = F.grad(g.ndata['h']['user'])
        # TODO (Israt): clear not working
        g.edata['m'].clear()

        #################################################################
        #  apply_edges() is called for all etypes at once
        #################################################################

        g.apply_edges(fn.copy_u('h', 'm'))
        r2 = g['plays'].edata['m']
        F.backward(r2, F.ones(r2.shape))
        n_grad2 = F.grad(g.nodes['user'].data['h'])

        # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                    print('@{} {} v.s. {}'.format(i, x, y))

        if not F.allclose(r1, r2):
            _print_error(r1, r2)
        assert F.allclose(r1, r2)
        if not F.allclose(n_grad1, n_grad2):
            print('node grad')
            _print_error(n_grad1, n_grad2)
        assert(F.allclose(n_grad1, n_grad2))

    _test(fn.copy_u, fn.sum)
    # TODO(Israt) :Add reduce func to suport the following reduce op
    # _test('copy_u', 'max')
    # _test('copy_u', 'min')
    # _test('copy_u', 'mean')


@parametrize_dtype
def test_unary_copy_e(idtype):
    def _test(mfunc, rfunc):

        g = create_test_heterograph(idtype)
        feat_size = 2

        x1 = F.randn((4,feat_size))
        x2 = F.randn((4,feat_size))
        x3 = F.randn((3,feat_size))
        x4 = F.randn((3,feat_size))
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)
        g['plays'].edata['eid'] = x1
        g['follows'].edata['eid'] = x2
        g['develops'].edata['eid'] = x3
        g['wishes'].edata['eid'] = x4

        #################################################################
        #  apply_edges() is called for each etype in a loop
        #################################################################
        with F.record_grad():
            [g.apply_edges(fn.copy_e('eid', 'm'), etype = rel)
                for rel in g.canonical_etypes]
            r1 = g['develops'].edata['m']
            F.backward(r1, F.ones(r1.shape))
            e_grad1 = F.grad(g['develops'].edata['eid'])

        #################################################################
        #  apply_edges() is called for all etypes at the same time
        #################################################################

        g.apply_edges(fn.copy_e('eid', 'm'))
        r2 = g['develops'].edata['m']
        F.backward(r2, F.ones(r2.shape))
        e_grad2 = F.grad(g['develops'].edata['eid'])

        # # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                   print('@{} {} v.s. {}'.format(i, x, y))

        if not F.allclose(r1, r2):
            _print_error(r1, r2)
        assert F.allclose(r1, r2)
        if not F.allclose(e_grad1, e_grad2):
            print('edge grad')
            _print_error(e_grad1, e_grad2)
        assert(F.allclose(e_grad1, e_grad2))

    _test(fn.copy_e, fn.sum)
    # TODO(Israt) :Add reduce func to suport the following reduce op
    # _test('copy_e', 'max')
    # _test('copy_e', 'min')
    # _test('copy_e', 'mean')


if __name__ == '__main__':
    test_unary_copy_u()
    test_unary_copy_e()