test_sampler.py 13.3 KB
Newer Older
1
import backend as F
Da Zheng's avatar
Da Zheng committed
2
3
4
5
import numpy as np
import scipy as sp
import dgl
from dgl import utils
6
from numpy.testing import assert_array_equal
Da Zheng's avatar
Da Zheng committed
7

8
9
np.random.seed(42)

Da Zheng's avatar
Da Zheng committed
10
11
12
13
def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
    return dgl.DGLGraph(arr, readonly=True)

14
15
16
def test_create_full():
    g = generate_rand_graph(100)
    full_nf = dgl.contrib.sampling.sampler.create_full_nodeflow(g, 5)
Da Zheng's avatar
Da Zheng committed
17
    assert full_nf.number_of_nodes() == g.number_of_nodes() * 6
18
19
    assert full_nf.number_of_edges() == g.number_of_edges() * 5

Da Zheng's avatar
Da Zheng committed
20
21
22
def test_1neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
23
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
Da Zheng's avatar
Da Zheng committed
24
            g, 1, g.number_of_nodes(), neighbor_type='in', num_workers=4)):
25
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
26
        assert len(seed_ids) == 1
27
        src, dst, eid = g.in_edges(seed_ids, form='all')
Da Zheng's avatar
Da Zheng committed
28
29
        assert subg.number_of_nodes() == len(src) + 1
        assert subg.number_of_edges() == len(src)
Da Zheng's avatar
Da Zheng committed
30

Da Zheng's avatar
Da Zheng committed
31
32
33
        assert seed_ids == subg.layer_parent_nid(-1)
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        assert F.array_equal(child_src, subg.layer_nid(0))
Da Zheng's avatar
Da Zheng committed
34

Da Zheng's avatar
Da Zheng committed
35
36
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
37
38

def is_sorted(arr):
39
    return np.sum(np.sort(arr) == arr, 0) == len(arr)
Da Zheng's avatar
Da Zheng committed
40
41

def verify_subgraph(g, subg, seed_id):
Da Zheng's avatar
Da Zheng committed
42
43
44
45
    seed_id = F.asnumpy(seed_id)
    seeds = F.asnumpy(subg.map_to_parent_nid(subg.layer_nid(-1)))
    assert seed_id in seeds
    child_seed = F.asnumpy(subg.layer_nid(-1))[seeds == seed_id]
46
    src, dst, eid = g.in_edges(seed_id, form='all')
Da Zheng's avatar
Da Zheng committed
47
48
    child_src, child_dst, child_eid = subg.in_edges(child_seed, form='all')

49
    child_src = F.asnumpy(child_src)
Da Zheng's avatar
Da Zheng committed
50
51
52
53
54
    # We don't allow duplicate elements in the neighbor list.
    assert(len(np.unique(child_src)) == len(child_src))
    # The neighbor list also needs to be sorted.
    assert(is_sorted(child_src))

Da Zheng's avatar
Da Zheng committed
55
    # a neighbor in the subgraph must also exist in parent graph.
56
    src = F.asnumpy(src)
Da Zheng's avatar
Da Zheng committed
57
    for i in subg.map_to_parent_nid(child_src):
58
        assert F.asnumpy(i) in src
Da Zheng's avatar
Da Zheng committed
59
60
61
62

def test_1neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
63
64
65
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
66
67
68
69
70
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

71
72
73
def test_prefetch_neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
74
75
76
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4, prefetch=True):
        seed_ids = subg.layer_parent_nid(-1)
77
78
79
80
81
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

Da Zheng's avatar
Da Zheng committed
82
83
84
def test_10neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
Da Zheng's avatar
Da Zheng committed
85
86
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, g.number_of_nodes(),
                                                     neighbor_type='in', num_workers=4):
87
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
88
        assert F.array_equal(seed_ids, subg.map_to_parent_nid(subg.layer_nid(-1)))
Da Zheng's avatar
Da Zheng committed
89

Da Zheng's avatar
Da Zheng committed
90
91
92
93
        src, dst, eid = g.in_edges(seed_ids, form='all')
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
94
95
96

def check_10neighbor_sampler(g, seeds):
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
97
98
99
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, 5, neighbor_type='in',
                                                     num_workers=4, seed_nodes=seeds):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
100
101
102
103
104
105
106
107
108
109
110
        assert subg.number_of_nodes() <= 6 * len(seed_ids)
        assert subg.number_of_edges() <= 5 * len(seed_ids)
        for seed_id in seed_ids:
            verify_subgraph(g, subg, seed_id)

def test_10neighbor_sampler():
    g = generate_rand_graph(100)
    check_10neighbor_sampler(g, None)
    check_10neighbor_sampler(g, seeds=np.unique(np.random.randint(0, g.number_of_nodes(),
                                                                  size=int(g.number_of_nodes() / 10))))

111
def _test_layer_sampler(prefetch=False):
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    g = generate_rand_graph(100)
    nid = g.nodes()
    src, dst, eid = g.all_edges(form='all', order='eid')
    n_batches = 5
    batch_size = 50
    seed_batches = [np.sort(np.random.choice(F.asnumpy(nid), batch_size, replace=False))
                    for i in range(n_batches)]
    seed_nodes = np.hstack(seed_batches)
    layer_sizes = [50] * 3
    LayerSampler = getattr(dgl.contrib.sampling, 'LayerSampler')
    sampler = LayerSampler(g, batch_size, layer_sizes, 'in',
                           seed_nodes=seed_nodes, num_workers=4, prefetch=prefetch)
    for sub_g in sampler:
        assert all(sub_g.layer_size(i) < size for i, size in enumerate(layer_sizes))
        sub_nid = F.arange(0, sub_g.number_of_nodes())
        assert all(np.all(np.isin(F.asnumpy(sub_g.layer_nid(i)), F.asnumpy(sub_nid)))
                   for i in range(sub_g.num_layers))
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_nid(sub_nid)),
                              F.asnumpy(nid)))
        sub_eid = F.arange(0, sub_g.number_of_edges())
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_eid(sub_eid)),
                              F.asnumpy(eid)))
        assert any(np.all(np.sort(F.asnumpy(sub_g.layer_parent_nid(-1))) == seed_batch)
                   for seed_batch in seed_batches)

        sub_src, sub_dst = sub_g.all_edges(order='eid')
        for i in range(sub_g.num_blocks):
            block_eid = sub_g.block_eid(i)
            block_src = sub_g.map_to_parent_nid(sub_src[block_eid])
            block_dst = sub_g.map_to_parent_nid(sub_dst[block_eid])

            block_parent_eid = sub_g.block_parent_eid(i)
            block_parent_src = src[block_parent_eid]
            block_parent_dst = dst[block_parent_eid]

            assert np.all(F.asnumpy(block_src == block_parent_src))

        n_layers = sub_g.num_layers
        sub_n = sub_g.number_of_nodes()
        assert sum(F.shape(sub_g.layer_nid(i))[0] for i in range(n_layers)) == sub_n
        n_blocks = sub_g.num_blocks
        sub_m = sub_g.number_of_edges()
        assert sum(F.shape(sub_g.block_eid(i))[0] for i in range(n_blocks)) == sub_m

Da Zheng's avatar
Da Zheng committed
156
157
158
159
def test_layer_sampler():
    _test_layer_sampler()
    _test_layer_sampler(prefetch=True)

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def test_nonuniform_neighbor_sampler():
    # Construct a graph with
    # (1) A path (0, 1, ..., 99) with weight 1
    # (2) A bunch of random edges with weight 0.
    edges = []
    for i in range(99):
        edges.append((i, i + 1))
    for i in range(1000):
        edge = (np.random.randint(100), np.random.randint(100))
        if edge not in edges:
            edges.append(edge)
    src, dst = zip(*edges)
    g = dgl.DGLGraph()
    g.add_nodes(100)
    g.add_edges(src, dst)
    g.readonly()

    g.edata['w'] = F.cat([
        F.ones((99,), F.float64, F.cpu()),
        F.zeros((len(edges) - 99,), F.float64, F.cpu())], 0)

    # Test 1-neighbor NodeFlow with 99 as target node.
    # The generated NodeFlow should only contain node i on layer i.
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'in', transition_prob='w', seed_nodes=[99])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
190
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == i
191
192
193
194
195
196
197
198
199

    # Test the reverse direction
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'out', transition_prob='w', seed_nodes=[0])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
200
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == 99 - i
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def test_setseed():
    g = generate_rand_graph(100)

    nids = []

    dgl.random.seed(42)
    for subg in dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1):
        nids.append(
            tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3)))

    # reinitialize
    dgl.random.seed(42)
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1)):
        item = tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3))
        assert item == nids[i]

    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=4)):
        pass

224
225
226
227
228
229
230
231
232
233
234
235
236
def check_head_tail(g):
    lsrc, ldst, leid = g.all_edges(form='all', order='eid')

    lsrc = np.unique(F.asnumpy(lsrc))
    head_nid = np.unique(F.asnumpy(g.head_nid))
    assert len(head_nid) == len(g.head_nid)
    np.testing.assert_equal(lsrc, head_nid)

    ldst = np.unique(F.asnumpy(ldst))
    tail_nid = np.unique(F.asnumpy(g.tail_nid))
    assert len(tail_nid) == len(g.tail_nid)
    np.testing.assert_equal(tail_nid, ldst)

Da Zheng's avatar
Da Zheng committed
237
def check_negative_sampler(mode, exclude_positive, neg_size):
238
    g = generate_rand_graph(100)
239
240
    etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64)
    g.edata['etype'] = F.tensor(etype)
241
242
243
244
245
246
247
248

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))

249
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
250
    # Test the homogeneous graph.
251
    for pos_edges, neg_edges in EdgeSampler(g, 50,
252
253
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
Da Zheng's avatar
Da Zheng committed
254
255
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
256
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
257
258
259
        assert_array_equal(F.asnumpy(pos_edges.parent_eid[pos_leid]),
                           F.asnumpy(g.edge_ids(pos_edges.parent_nid[pos_lsrc],
                                                pos_edges.parent_nid[pos_ldst])))
260
261

        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
262

263
264
265
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
266
267
268
269
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst[i]))
            neg_e = int(F.asnumpy(neg_eid[i]))
            assert (neg_d, neg_e) in pos_map
270
271
272
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

273
274
275
276
277
278
279
        check_head_tail(neg_edges)
        pos_tails = pos_edges.parent_nid[pos_edges.tail_nid]
        neg_tails = neg_edges.parent_nid[neg_edges.tail_nid]
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

Da Zheng's avatar
Da Zheng committed
280
        exist = neg_edges.edata['false_neg']
281
282
283
284
285
286
287
288
289
290
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)

    # Test the knowledge graph.
    for _, neg_edges in EdgeSampler(g, 50,
                                    negative_mode=mode,
                                    neg_sample_size=neg_size,
                                    exclude_positive=exclude_positive,
Da Zheng's avatar
Da Zheng committed
291
292
                                    relations=g.edata['etype'],
                                    return_false_neg=True):
293
294
295
296
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
Da Zheng's avatar
Da Zheng committed
297
        exists = neg_edges.edata['false_neg']
298
299
300
301
302
303
304
305
306
        neg_edges.edata['etype'] = g.edata['etype'][neg_eid]
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)

307
def test_negative_sampler():
Da Zheng's avatar
Da Zheng committed
308
309
310
    check_negative_sampler('PBG-head', False, 10)
    check_negative_sampler('head', True, 10)
    check_negative_sampler('head', False, 10)
Da Zheng's avatar
Da Zheng committed
311
312
    #disable this check for now. It might take too long time.
    #check_negative_sampler('head', False, 100)
313
314


Da Zheng's avatar
Da Zheng committed
315
if __name__ == '__main__':
316
    test_create_full()
Da Zheng's avatar
Da Zheng committed
317
318
319
320
    test_1neighbor_sampler_all()
    test_10neighbor_sampler_all()
    test_1neighbor_sampler()
    test_10neighbor_sampler()
Da Zheng's avatar
Da Zheng committed
321
    test_layer_sampler()
322
    test_nonuniform_neighbor_sampler()
323
    test_setseed()
324
    test_negative_sampler()