multi_gpu_graph_prediction.py 5.47 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
import torch.optim as optim
import dgl
import dgl.nn as dglnn
from dgl.data import AsGraphPredDataset
from dgl.dataloading import GraphDataLoader
from ogb.graphproppred import DglGraphPropPredDataset, Evaluator
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder
from tqdm import tqdm
import argparse

class MLP(nn.Module):
    def __init__(self, in_feats):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(in_feats, 2 * in_feats),
            nn.BatchNorm1d(2 * in_feats),
            nn.ReLU(),
            nn.Linear(2 * in_feats, in_feats),
            nn.BatchNorm1d(in_feats)
        )

    def forward(self, h):
        return self.mlp(h)

class GIN(nn.Module):
    def __init__(self, n_hidden, n_output, n_layers=5):
        super().__init__()
        self.node_encoder = AtomEncoder(n_hidden)
        self.edge_encoders = nn.ModuleList([
            BondEncoder(n_hidden) for _ in range(n_layers)])

        self.pool = dglnn.AvgPooling()
        self.dropout = nn.Dropout(0.5)
        self.layers = nn.ModuleList()
        for _ in range(n_layers):
            self.layers.append(dglnn.GINEConv(MLP(n_hidden), learn_eps=True))       
        self.predictor = nn.Linear(n_hidden, n_output)    

        # add virtual node
        self.virtual_emb = nn.Embedding(1, n_hidden)
        nn.init.constant_(self.virtual_emb.weight.data, 0)
        self.virtual_layers = nn.ModuleList()
        for _ in range(n_layers - 1):
            self.virtual_layers.append(MLP(n_hidden))
        self.virtual_pool = dglnn.SumPooling()

    def forward(self, g, x, x_e):
        v_emb = self.virtual_emb.weight.expand(g.batch_size, -1)
        hn = self.node_encoder(x)
        for i in range(len(self.layers)):
            v_hn = dgl.broadcast_nodes(g, v_emb)
            hn = hn + v_hn
            he = self.edge_encoders[i](x_e)
            hn = self.layers[i](g, hn, he)
            hn = F.relu(hn)
            hn = self.dropout(hn)
            if i != len(self.layers) - 1:
                v_emb_tmp = self.virtual_pool(g, hn) + v_emb
                v_emb = self.virtual_layers[i](v_emb_tmp)
                v_emb = self.dropout(F.relu(v_emb))
        hn = self.pool(g, hn)
        return self.predictor(hn)

@torch.no_grad()
def evaluate(dataloader, device, model, evaluator):
    model.eval()
    y_true = []
    y_pred = []
    for batched_graph, labels in tqdm(dataloader):
        batched_graph, labels = batched_graph.to(device), labels.to(device)
        node_feat, edge_feat = batched_graph.ndata['feat'], batched_graph.edata['feat']
        y_hat = model(batched_graph, node_feat, edge_feat)
        y_true.append(labels.view(y_hat.shape).detach().cpu())
        y_pred.append(y_hat.detach().cpu())          
    y_true = torch.cat(y_true, dim=0).numpy()
    y_pred = torch.cat(y_pred, dim=0).numpy()
    input_dict = {'y_true': y_true, 'y_pred': y_pred}
    return evaluator.eval(input_dict)

def train(rank, world_size, dataset_name, root):
    dist.init_process_group('nccl', 'tcp://127.0.0.1:12347', world_size=world_size, rank=rank)
    torch.cuda.set_device(rank)

    dataset = AsGraphPredDataset(DglGraphPropPredDataset(dataset_name, root))
    evaluator = Evaluator(dataset_name)

    model = GIN(300, dataset.num_tasks).to(rank)
    model = nn.parallel.DistributedDataParallel(model, device_ids=[rank])
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)

    train_dataloader = GraphDataLoader(
            dataset[dataset.train_idx], batch_size=256,
            use_ddp=True, shuffle=True)
    valid_dataloader = GraphDataLoader(
            dataset[dataset.val_idx], batch_size=256)
    test_dataloader = GraphDataLoader(
            dataset[dataset.test_idx], batch_size=256)

    for epoch in range(50):
        model.train()
        train_dataloader.set_epoch(epoch)
        for batched_graph, labels in train_dataloader:
            batched_graph, labels = batched_graph.to(rank), labels.to(rank)
            node_feat, edge_feat = batched_graph.ndata['feat'], batched_graph.edata['feat']
            logits = model(batched_graph, node_feat, edge_feat)
            optimizer.zero_grad()
            is_labeled = labels == labels
            loss = F.binary_cross_entropy_with_logits(logits.float()[is_labeled], labels.float()[is_labeled])
            loss.backward()
            optimizer.step()
        scheduler.step()

        if rank == 0:
            val_metric = evaluate(valid_dataloader, rank, model.module, evaluator)[evaluator.eval_metric]
            test_metric = evaluate(test_dataloader, rank, model.module, evaluator)[evaluator.eval_metric]

            print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, '
                  f'Val: {val_metric:.4f}, Test: {test_metric:.4f}')

    dist.destroy_process_group()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default="ogbg-molhiv",
                        choices=['ogbg-molhiv', 'ogbg-molpcba'],
                        help='name of dataset (default: ogbg-molhiv)')
    dataset_name = parser.parse_args().dataset
    root = './data/OGB'
    DglGraphPropPredDataset(dataset_name, root)

    world_size = torch.cuda.device_count()
    print('Let\'s use', world_size, 'GPUs!')
    args = (world_size, dataset_name, root)
    import torch.multiprocessing as mp
    mp.spawn(train, args=args, nprocs=world_size, join=True)