"docs/vscode:/vscode.git/clone" did not exist on "0f079b932d4382ad6675593f9a140b2a74c8cfb4"
data_preprocess.py 3.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import ssl
from six.moves import urllib

import pandas as pd
import numpy as np

import torch
import dgl

# === Below data preprocessing code are based on
# https://github.com/twitter-research/tgn

# Preprocess the raw data split each features

def preprocess(data_name):
    u_list, i_list, ts_list, label_list = [], [], [], []
    feat_l = []
    idx_list = []

    with open(data_name) as f:
        s = next(f)
        for idx, line in enumerate(f):
            e = line.strip().split(',')
            u = int(e[0])
            i = int(e[1])

            ts = float(e[2])
            label = float(e[3])  # int(e[3])

            feat = np.array([float(x) for x in e[4:]])

            u_list.append(u)
            i_list.append(i)
            ts_list.append(ts)
            label_list.append(label)
            idx_list.append(idx)

            feat_l.append(feat)
    return pd.DataFrame({'u': u_list,
                         'i': i_list,
                         'ts': ts_list,
                         'label': label_list,
                         'idx': idx_list}), np.array(feat_l)

# Re index nodes for DGL convience
def reindex(df, bipartite=True):
    new_df = df.copy()
    if bipartite:
        assert (df.u.max() - df.u.min() + 1 == len(df.u.unique()))
        assert (df.i.max() - df.i.min() + 1 == len(df.i.unique()))

        upper_u = df.u.max() + 1
        new_i = df.i + upper_u

        new_df.i = new_i
        new_df.u += 1
        new_df.i += 1
        new_df.idx += 1
    else:
        new_df.u += 1
        new_df.i += 1
        new_df.idx += 1

    return new_df

# Save edge list, features in different file for data easy process data
def run(data_name, bipartite=True):
    PATH = './data/{}.csv'.format(data_name)
    OUT_DF = './data/ml_{}.csv'.format(data_name)
    OUT_FEAT = './data/ml_{}.npy'.format(data_name)
    OUT_NODE_FEAT = './data/ml_{}_node.npy'.format(data_name)

    df, feat = preprocess(PATH)
    new_df = reindex(df, bipartite)

    empty = np.zeros(feat.shape[1])[np.newaxis, :]
    feat = np.vstack([empty, feat])

    max_idx = max(new_df.u.max(), new_df.i.max())
    rand_feat = np.zeros((max_idx + 1, 172))

    new_df.to_csv(OUT_DF)
    np.save(OUT_FEAT, feat)
    np.save(OUT_NODE_FEAT, rand_feat)

# === code from twitter-research-tgn end ===

# If you have new dataset follow by same format in Jodie,
# you can directly use name to retrieve dataset

def TemporalDataset(dataset):
    if not os.path.exists('./data/{}.bin'.format(dataset)):
        if not os.path.exists('./data/{}.csv'.format(dataset)):
            if not os.path.exists('./data'):
                os.mkdir('./data')

            url = 'https://snap.stanford.edu/jodie/{}.csv'.format(dataset)
            print("Start Downloading File....")
            context = ssl._create_unverified_context()
            data = urllib.request.urlopen(url, context=context)
            with open("./data/{}.csv".format(dataset), "wb") as handle:
                handle.write(data.read())

        print("Start Process Data ...")
        run(dataset)
        raw_connection = pd.read_csv('./data/ml_{}.csv'.format(dataset))
        raw_feature = np.load('./data/ml_{}.npy'.format(dataset))
        # -1 for re-index the node
        src = raw_connection['u'].to_numpy()-1
        dst = raw_connection['i'].to_numpy()-1
        # Create directed graph
        g = dgl.graph((src, dst))
        g.edata['timestamp'] = torch.from_numpy(
            raw_connection['ts'].to_numpy())
        g.edata['label'] = torch.from_numpy(raw_connection['label'].to_numpy())
        g.edata['feats'] = torch.from_numpy(raw_feature[1:, :]).float()
        dgl.save_graphs('./data/{}.bin'.format(dataset), [g])
    else:
        print("Data is exist directly loaded.")
        gs, _ = dgl.load_graphs('./data/{}.bin'.format(dataset))
        g = gs[0]
    return g

def TemporalWikipediaDataset():
    # Download the dataset
    return TemporalDataset('wikipedia')

def TemporalRedditDataset():
    return TemporalDataset('reddit')