train.py 8.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python
# coding: utf-8

import ogb
from ogb.lsc import MAG240MDataset, MAG240MEvaluator
import dgl
import torch
import numpy as np
import time
import tqdm
import dgl.function as fn
import numpy as np
import dgl.nn as dglnn
import torch.nn as nn
import torch.nn.functional as F
import argparse

class RGAT(nn.Module):
    def __init__(self, in_channels, out_channels, hidden_channels, num_etypes, num_layers, num_heads, dropout, pred_ntype):
        super().__init__()
        self.convs = nn.ModuleList()
        self.norms = nn.ModuleList()
        self.skips = nn.ModuleList()
        
        self.convs.append(nn.ModuleList([
            dglnn.GATConv(in_channels, hidden_channels // num_heads, num_heads, allow_zero_in_degree=True)
            for _ in range(num_etypes)
        ]))
        self.norms.append(nn.BatchNorm1d(hidden_channels))
        self.skips.append(nn.Linear(in_channels, hidden_channels))
        for _ in range(num_layers - 1):
            self.convs.append(nn.ModuleList([
                dglnn.GATConv(hidden_channels, hidden_channels // num_heads, num_heads, allow_zero_in_degree=True)
                for _ in range(num_etypes)
            ]))
            self.norms.append(nn.BatchNorm1d(hidden_channels))
            self.skips.append(nn.Linear(hidden_channels, hidden_channels))
            
        self.mlp = nn.Sequential(
            nn.Linear(hidden_channels, hidden_channels),
            nn.BatchNorm1d(hidden_channels),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_channels, out_channels)
        )
        self.dropout = nn.Dropout(dropout)
        
        self.hidden_channels = hidden_channels
        self.pred_ntype = pred_ntype
        self.num_etypes = num_etypes
        
    def forward(self, mfgs, x):
        for i in range(len(mfgs)):
            mfg = mfgs[i]
            x_dst = x[:mfg.num_dst_nodes()]
            n_src = mfg.num_src_nodes()
            n_dst = mfg.num_dst_nodes()
            mfg = dgl.block_to_graph(mfg)
            x_skip = self.skips[i](x_dst)
            for j in range(self.num_etypes):
                subg = mfg.edge_subgraph(mfg.edata['etype'] == j, preserve_nodes=True)
                x_skip += self.convs[i][j](subg, (x, x_dst)).view(-1, self.hidden_channels)
            x = self.norms[i](x_skip)
            x = F.elu(x)
            x = self.dropout(x)
        return self.mlp(x)


class ExternalNodeCollator(dgl.dataloading.NodeCollator):
    def __init__(self, g, idx, sampler, offset, feats, label):
        super().__init__(g, idx, sampler)
        self.offset = offset
        self.feats = feats
        self.label = label

    def collate(self, items):
        input_nodes, output_nodes, mfgs = super().collate(items)
        # Copy input features
        mfgs[0].srcdata['x'] = torch.FloatTensor(self.feats[input_nodes])
        mfgs[-1].dstdata['y'] = torch.LongTensor(self.label[output_nodes - self.offset])
        return input_nodes, output_nodes, mfgs

def train(args, dataset, g, feats, paper_offset):
    print('Loading masks and labels')
    train_idx = torch.LongTensor(dataset.get_idx_split('train')) + paper_offset
    valid_idx = torch.LongTensor(dataset.get_idx_split('valid')) + paper_offset
    label = dataset.paper_label

    print('Initializing dataloader...')
    sampler = dgl.dataloading.MultiLayerNeighborSampler([15, 25])
    train_collator = ExternalNodeCollator(g, train_idx, sampler, paper_offset, feats, label)
    valid_collator = ExternalNodeCollator(g, valid_idx, sampler, paper_offset, feats, label)
    train_dataloader = torch.utils.data.DataLoader(
        train_collator.dataset,
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        collate_fn=train_collator.collate,
        num_workers=4
    )
    valid_dataloader = torch.utils.data.DataLoader(
        valid_collator.dataset,
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        collate_fn=valid_collator.collate,
        num_workers=2
    )

    print('Initializing model...')
    model = RGAT(dataset.num_paper_features, dataset.num_classes, 1024, 5, 2, 4, 0.5, 'paper').cuda()
    opt = torch.optim.Adam(model.parameters(), lr=0.001)
    sched = torch.optim.lr_scheduler.StepLR(opt, step_size=25, gamma=0.25)

    best_acc = 0

    for _ in range(args.epochs):
        model.train()
        with tqdm.tqdm(train_dataloader) as tq:
            for i, (input_nodes, output_nodes, mfgs) in enumerate(tq):
                mfgs = [g.to('cuda') for g in mfgs]
                x = mfgs[0].srcdata['x']
                y = mfgs[-1].dstdata['y']
                y_hat = model(mfgs, x)
                loss = F.cross_entropy(y_hat, y)
                opt.zero_grad()
                loss.backward()
                opt.step()
                acc = (y_hat.argmax(1) == y).float().mean()
                tq.set_postfix({'loss': '%.4f' % loss.item(), 'acc': '%.4f' % acc.item()}, refresh=False)

        model.eval()
        correct = total = 0
        for i, (input_nodes, output_nodes, mfgs) in enumerate(tqdm.tqdm(valid_dataloader)):
            with torch.no_grad():
                mfgs = [g.to('cuda') for g in mfgs]
                x = mfgs[0].srcdata['x']
                y = mfgs[-1].dstdata['y']
                y_hat = model(mfgs, x)
                correct += (y_hat.argmax(1) == y).sum().item()
                total += y_hat.shape[0]
        acc = correct / total
        print('Validation accuracy:', acc)

        sched.step()

        if best_acc < acc:
            best_acc = acc
            print('Updating best model...')
            torch.save(model.state_dict(), args.model_path)

def test(args, dataset, g, feats, paper_offset):
    print('Loading masks and labels...')
    valid_idx = torch.LongTensor(dataset.get_idx_split('valid')) + paper_offset
    test_idx = torch.LongTensor(dataset.get_idx_split('test')) + paper_offset
    label = dataset.paper_label

    print('Initializing data loader...')
    sampler = dgl.dataloading.MultiLayerNeighborSampler([160, 160])
    valid_collator = ExternalNodeCollator(g, valid_idx, sampler, paper_offset, feats, label)
    valid_dataloader = torch.utils.data.DataLoader(
        valid_collator.dataset,
        batch_size=16,
        shuffle=False,
        drop_last=False,
        collate_fn=valid_collator.collate,
        num_workers=2
    )
    test_collator = ExternalNodeCollator(g, test_idx, sampler, paper_offset, feats, label)
    test_dataloader = torch.utils.data.DataLoader(
        test_collator.dataset,
        batch_size=16,
        shuffle=False,
        drop_last=False,
        collate_fn=test_collator.collate,
        num_workers=4
    )

    print('Loading model...')
    model = RGAT(dataset.num_paper_features, dataset.num_classes, 1024, 5, 2, 4, 0.5, 'paper').cuda()
    model.load_state_dict(torch.load(args.model_path))

    model.eval()
    correct = total = 0
    for i, (input_nodes, output_nodes, mfgs) in enumerate(tqdm.tqdm(valid_dataloader)):
        with torch.no_grad():
            mfgs = [g.to('cuda') for g in mfgs]
            x = mfgs[0].srcdata['x']
            y = mfgs[-1].dstdata['y']
            y_hat = model(mfgs, x)
            correct += (y_hat.argmax(1) == y).sum().item()
            total += y_hat.shape[0]
    acc = correct / total
    print('Validation accuracy:', acc)
    evaluator = MAG240MEvaluator()
    y_preds = []
    for i, (input_nodes, output_nodes, mfgs) in enumerate(tqdm.tqdm(test_dataloader)):
        with torch.no_grad():
            mfgs = [g.to('cuda') for g in mfgs]
            x = mfgs[0].srcdata['x']
            y = mfgs[-1].dstdata['y']
            y_hat = model(mfgs, x)
            y_preds.append(y_hat.argmax(1).cpu())
    evaluator.save_test_submission({'y_pred': torch.cat(y_preds)}, args.submission_path)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--rootdir', type=str, default='.', help='Directory to download the OGB dataset.')
    parser.add_argument('--graph-path', type=str, default='./graph.dgl', help='Path to the graph.')
    parser.add_argument('--full-feature-path', type=str, default='./full.npy',
                        help='Path to the features of all nodes.')
    parser.add_argument('--epochs', type=int, default=100, help='Number of epochs.')
    parser.add_argument('--model-path', type=str, default='./model.pt', help='Path to store the best model.')
    parser.add_argument('--submission-path', type=str, default='./results', help='Submission directory.')
    args = parser.parse_args()

    dataset = MAG240MDataset(root=args.rootdir)

    print('Loading graph')
    (g,), _ = dgl.load_graphs(args.graph_path)
    g = g.formats(['csc'])

    print('Loading features')
    paper_offset = dataset.num_authors + dataset.num_institutions
    num_nodes = paper_offset + dataset.num_papers
    num_features = dataset.num_paper_features
    feats = np.memmap(args.full_feature_path, mode='r', dtype='float16', shape=(num_nodes, num_features))

    if args.epochs != 0:
        train(args, dataset, g, feats, paper_offset)
    test(args, dataset, g, feats, paper_offset)