data_shuffle.py 34.6 KB
Newer Older
1
2
3
import gc
import logging
import math
4
5
import os
import sys
6
7
8
9
from datetime import timedelta
from timeit import default_timer as timer

import dgl
10
11
12
13
14
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

15
import constants
16
from convert_partition import create_dgl_object, create_metadata_json
17
from dataset_utils import get_dataset
18
from dist_lookup import DistLookupService
19
20
21
22
23
24
25
26
27
from globalids import (assign_shuffle_global_nids_edges,
                       assign_shuffle_global_nids_nodes,
                       lookup_shuffle_global_nids_edges)
from gloo_wrapper import allgather_sizes, alltoallv_cpu, gather_metadata_json
from utils import (augment_edge_data, get_gnid_range_map, get_idranges,
                   get_node_types, get_ntype_featnames, memory_snapshot,
                   read_json, read_ntype_partition_files, write_dgl_objects,
                   write_metadata_json)

28

29
def gen_node_data(rank, world_size, id_lookup, ntid_ntype_map, schema_map):
30
31
32
    '''
    For this data processing pipeline, reading node files is not needed. All the needed information about
    the nodes can be found in the metadata json file. This function generates the nodes owned by a given
33
    process, using metis partitions.
34

35
    Parameters:
36
37
    -----------
    rank : int
38
        rank of the process
39
    world_size : int
40
        total no. of processes
41
42
43
    id_lookup : instance of class DistLookupService
       Distributed lookup service used to map global-nids to respective partition-ids and 
       shuffle-global-nids
44
    ntid_ntype_map : 
45
        a dictionary where keys are node_type ids(integers) and values are node_type names(strings).
46
    schema_map:
47
        dictionary formed by reading the input metadata json file for the input dataset.
48
49
50

        Please note that, it is assumed that for the input graph files, the nodes of a particular node-type are
        split into `p` files (because of `p` partitions to be generated). On a similar node, edges of a particular
51
        edge-type are split into `p` files as well.
52

53
54
        #assuming m nodetypes present in the input graph
        "num_nodes_per_chunk" : [
55
56
            [a0, a1, a2, ... a<p-1>],
            [b0, b1, b2, ... b<p-1>],
57
58
59
            ...
            [m0, m1, m2, ... m<p-1>]
        ]
60
        Here, each sub-list, corresponding a nodetype in the input graph, has `p` elements. For instance [a0, a1, ... a<p-1>]
61
62
63
        where each element represents the number of nodes which are to be processed by a process during distributed partitioning.

        In addition to the above key-value pair for the nodes in the graph, the node-features are captured in the
64
        "node_data" key-value pair. In this dictionary the keys will be nodetype names and value will be a dictionary which
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        is used to capture all the features present for that particular node-type. This is shown in the following example:

        "node_data" : {
            "paper": {       # node type
                "feat": {   # feature key
                    "format": {"name": "numpy"},
                    "data": ["node_data/paper-feat-part1.npy", "node_data/paper-feat-part2.npy"]
                },
                "label": {   # feature key
                    "format": {"name": "numpy"},
                    "data": ["node_data/paper-label-part1.npy", "node_data/paper-label-part2.npy"]
                },
                "year": {   # feature key
                    "format": {"name": "numpy"},
                    "data": ["node_data/paper-year-part1.npy", "node_data/paper-year-part2.npy"]
                }
            }
        }
83
84
85
        In the above textual description we have a node-type, which is paper, and it has 3 features namely feat, label and year.
        Each feature has `p` files whose location in the filesystem is the list for the key "data" and "foramt" is used to
        describe storage format.
86
87
88

    Returns:
    --------
89
90
    dictionary :
        dictionary where keys are column names and values are numpy arrays, these arrays are generated by
91
92
93
        using information present in the metadata json file

    '''
94
95
    local_node_data = { constants.GLOBAL_NID : [],
                        constants.NTYPE_ID : [],
96
97
98
                        constants.GLOBAL_TYPE_NID : []
                        }

99
    type_nid_dict, global_nid_dict = get_idranges(schema_map[constants.STR_NODE_TYPE],
100
101
                                        schema_map[constants.STR_NUM_NODES_PER_CHUNK],
                                        num_chunks=world_size)
102

103
    for ntype_id, ntype_name in ntid_ntype_map.items():
104
105
        type_start, type_end = type_nid_dict[ntype_name][0][0], type_nid_dict[ntype_name][-1][1]
        gnid_start, gnid_end = global_nid_dict[ntype_name][0, 0], global_nid_dict[ntype_name][0, 1]
106

107
        node_partid_slice = id_lookup.get_partition_ids(np.arange(gnid_start, gnid_end, dtype=np.int64)) #exclusive
108
109
110
111
112
113
114
        cond = node_partid_slice == rank
        own_gnids = np.arange(gnid_start, gnid_end, dtype=np.int64)
        own_gnids = own_gnids[cond]

        own_tnids = np.arange(type_start, type_end, dtype=np.int64)
        own_tnids = own_tnids[cond]

115
        local_node_data[constants.NTYPE_ID].append(np.ones(own_gnids.shape, dtype=np.int64)*ntype_id)
116
117
118
119
120
121
122
        local_node_data[constants.GLOBAL_NID].append(own_gnids)
        local_node_data[constants.GLOBAL_TYPE_NID].append(own_tnids)

    for k in local_node_data.keys():
        local_node_data[k] = np.concatenate(local_node_data[k])

    return local_node_data
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

def exchange_edge_data(rank, world_size, edge_data):
    """
    Exchange edge_data among processes in the world.
    Prepare list of sliced data targeting each process and trigger
    alltoallv_cpu to trigger messaging api

    Parameters:
    -----------
    rank : int
        rank of the process
    world_size : int
        total no. of processes
    edge_data : dictionary
        edge information, as a dicitonary which stores column names as keys and values
        as column data. This information is read from the edges.txt file.

    Returns:
    --------
142
    dictionary :
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        the input argument, edge_data, is updated with the edge data received by other processes
        in the world.
    """

    input_list = []
    start = timer()
    for i in np.arange(world_size):
        send_idx = (edge_data[constants.OWNER_PROCESS] == i)
        send_idx = send_idx.reshape(edge_data[constants.GLOBAL_SRC_ID].shape[0])
        filt_data = np.column_stack((edge_data[constants.GLOBAL_SRC_ID][send_idx == 1], \
                                    edge_data[constants.GLOBAL_DST_ID][send_idx == 1], \
                                    edge_data[constants.GLOBAL_TYPE_EID][send_idx == 1], \
                                    edge_data[constants.ETYPE_ID][send_idx == 1], \
                                    edge_data[constants.GLOBAL_EID][send_idx == 1]))
        if(filt_data.shape[0] <= 0):
158
            input_list.append(torch.empty((0,5), dtype=torch.int64))
159
160
161
        else:
            input_list.append(torch.from_numpy(filt_data))
    end = timer()
162

163
    dist.barrier ()
164
    output_list = alltoallv_cpu(rank, world_size, input_list)
165
    end = timer()
166
    logging.info(f'[Rank: {rank}] Time to send/rcv edge data: {timedelta(seconds=end-start)}')
167
168
169
170
171
172
173
174
175
176
177

    #Replace the values of the edge_data, with the received data from all the other processes.
    rcvd_edge_data = torch.cat(output_list).numpy()
    edge_data[constants.GLOBAL_SRC_ID] = rcvd_edge_data[:,0]
    edge_data[constants.GLOBAL_DST_ID] = rcvd_edge_data[:,1]
    edge_data[constants.GLOBAL_TYPE_EID] = rcvd_edge_data[:,2]
    edge_data[constants.ETYPE_ID] = rcvd_edge_data[:,3]
    edge_data[constants.GLOBAL_EID] = rcvd_edge_data[:,4]
    edge_data.pop(constants.OWNER_PROCESS)
    return edge_data

178
def exchange_node_features(rank, world_size, node_feature_tids, ntype_gnid_map, id_lookup, node_features):
179
180
    """
    This function is used to shuffle node features so that each process will receive
181
    all the node features whose corresponding nodes are owned by the same process.
182
183
    The mapping procedure to identify the owner process is not straight forward. The
    following steps are used to identify the owner processes for the locally read node-
184
    features.
185
186
    a. Compute the global_nids for the locally read node features. Here metadata json file
        is used to identify the corresponding global_nids. Please note that initial graph input
187
188
189
190
191
        nodes.txt files are sorted based on node_types.
    b. Using global_nids and metis partitions owner processes can be easily identified.
    c. Now each process sends the global_nids for which shuffle_global_nids are needed to be
        retrieved.
    d. After receiving the corresponding shuffle_global_nids these ids are added to the
192
        node_data and edge_data dictionaries
193

194
195
    This pipeline assumes all the input data in numpy format, except node/edge features which
    are maintained as tensors throughout the various stages of the pipeline execution.
196

197
    Parameters:
198
199
200
201
    -----------
    rank : int
        rank of the current process
    world_size : int
202
        total no. of participating processes.
203
204
205
    node_feature_tids : dictionary
        dictionary with keys as node-type names and value is a dictionary. This dictionary
        contains information about node-features associated with a given node-type and value
206
        is a list.  This list contains a of indexes, like [starting-idx, ending-idx) which
207
208
        can be used to index into the node feature tensors read from corresponding input files.
    ntypes_gnid_map : dictionary
209
        mapping between node type names and global_nids which belong to the keys in this dictionary
210
211
212
    id_lookup : instance of class DistLookupService
       Distributed lookup service used to map global-nids to respective partition-ids and 
       shuffle-global-nids
213
214
215
    node_feautres: dicitonary
        dictionry where node_features are stored and this information is read from the appropriate
        node features file which belongs to the current process
216
217
218

    Returns:
    --------
219
220
    dictionary :
        node features are returned as a dictionary where keys are node type names and node feature names
221
        and values are tensors
222
223
    dictionary :
        a dictionary of global_nids for the nodes whose node features are received during the data shuffle
224
        process
225
226
    """
    start = timer()
227
228
229
230
231
    own_node_features = {}
    own_global_nids = {}
    #To iterate over the node_types and associated node_features
    for ntype_name, ntype_info in node_feature_tids.items():

232
        #To iterate over the node_features, of a given node_type
233
234
235
236
237
238
239
240
        #ntype_info is a list of 3 elements
        #[node-feature-name, starting-idx, ending-idx]
        #node-feature-name is the name given to the node-feature, read from the input metadata file
        #[starting-idx, ending-idx) specifies the range of indexes associated with the node-features read from
        #the associated input file. Note that the rows of node-features read from the input file should be same
        #as specified with this range. So no. of rows = ending-idx - starting-idx.
        for feat_info in ntype_info:

241
            #determine the owner process for these node features.
242
243
244
245
            node_feats_per_rank = []
            global_nid_per_rank = []
            feat_name = feat_info[0]
            feat_key = ntype_name+'/'+feat_name
246
            logging.info(f'[Rank: {rank}] processing node feature: {feat_key}')
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

            #compute the global_nid range for this node features
            type_nid_start = int(feat_info[1])
            type_nid_end = int(feat_info[2])
            begin_global_nid = ntype_gnid_map[ntype_name][0]
            gnid_start = begin_global_nid + type_nid_start
            gnid_end = begin_global_nid + type_nid_end

            #type_nids for this feature subset on the current rank
            gnids_feat = np.arange(gnid_start, gnid_end)
            tnids_feat = np.arange(type_nid_start, type_nid_end)
            local_idx = np.arange(0, type_nid_end - type_nid_start)

            #check if node features exist for this ntype_name + feat_name
            #this check should always pass, because node_feature_tids are built
            #by reading the input metadata json file for existing node features.
            assert(feat_key in node_features)

            node_feats = node_features[feat_key]
            for part_id in range(world_size):
267
                partid_slice = id_lookup.get_partition_ids(np.arange(gnid_start, gnid_end, dtype=np.int64))
268
269
270
271
272
273
                cond = (partid_slice == part_id)
                gnids_per_partid = gnids_feat[cond]
                tnids_per_partid = tnids_feat[cond]
                local_idx_partid = local_idx[cond]

                if (gnids_per_partid.shape[0] == 0):
274
275
                    node_feats_per_rank.append(torch.empty((0,1), dtype=torch.float))
                    global_nid_per_rank.append(np.empty((0,1), dtype=np.int64))
276
                else:
277
278
                    node_feats_per_rank.append(node_feats[local_idx_partid])
                    global_nid_per_rank.append(torch.from_numpy(gnids_per_partid).type(torch.int64))
279
280
281

            #features (and global nids) per rank to be sent out are ready
            #for transmission, perform alltoallv here.
282
283
            output_feat_list = alltoallv_cpu(rank, world_size, node_feats_per_rank)
            output_nid_list = alltoallv_cpu(rank, world_size, global_nid_per_rank)
284
285

            #stitch node_features together to form one large feature tensor
286
287
            own_node_features[feat_key] = torch.cat(output_feat_list)
            own_global_nids[feat_key] = torch.cat(output_nid_list).numpy()
288
289

    end = timer()
290
    logging.info(f'[Rank: {rank}] Total time for node feature exchange: {timedelta(seconds = end - start)}')
291
    return own_node_features, own_global_nids
292

293
def exchange_graph_data(rank, world_size, node_features, node_feat_tids, edge_data,
294
        id_lookup, ntypes_gnid_range_map, ntid_ntype_map, schema_map):
295
    """
296
    Wrapper function which is used to shuffle graph data on all the processes.
297

298
    Parameters:
299
300
301
302
    -----------
    rank : int
        rank of the current process
    world_size : int
303
        total no. of participating processes.
304
305
306
    node_feautres: dicitonary
        dictionry where node_features are stored and this information is read from the appropriate
        node features file which belongs to the current process
307
308
309
310
311
    node_feat_tids: dictionary
        in which keys are node-type names and values are triplets. Each triplet has node-feature name
        and the starting and ending type ids of the node-feature data read from the corresponding
        node feature data file read by current process. Each node type may have several features and
        hence each key may have several triplets.
312
313
314
    edge_data : dictionary
        dictionary which is used to store edge information as read from the edges.txt file assigned
        to each process.
315
316
317
    id_lookup : instance of class DistLookupService
       Distributed lookup service used to map global-nids to respective partition-ids and 
       shuffle-global-nids
318
    ntypes_ntypeid_map : dictionary
319
        mappings between node type names and node type ids
320
    ntypes_gnid_range_map : dictionary
321
        mapping between node type names and global_nids which belong to the keys in this dictionary
322
    ntid_ntype_map : dictionary
323
        mapping between node type id and no of nodes which belong to each node_type_id
324
325
    schema_map : dictionary
        is the data structure read from the metadata json file for the input graph
326
327
328

    Returns:
    --------
329
    dictionary :
330
331
        the input argument, node_data dictionary, is updated with the node data received from other processes
        in the world. The node data is received by each rank in the process of data shuffling.
332
333
    dictionary :
        node features dictionary which has node features for the nodes which are owned by the current
334
        process
335
336
    dictionary :
        list of global_nids for the nodes whose node features are received when node features shuffling was
337
        performed in the `exchange_node_features` function call
338
    dictionary :
339
340
341
        the input argument, edge_data dictionary, is updated with the edge data received from other processes
        in the world. The edge data is received by each rank in the process of data shuffling.
    """
342
    memory_snapshot("ShuffleNodeFeaturesBegin: ", rank)
343
    rcvd_node_features, rcvd_global_nids = exchange_node_features(rank, world_size, node_feat_tids, \
344
                                                ntypes_gnid_range_map, id_lookup, node_features)
345
    memory_snapshot("ShuffleNodeFeaturesComplete: ", rank)
346
    logging.info(f'[Rank: {rank}] Done with node features exchange.')
347

348
    node_data = gen_node_data(rank, world_size, id_lookup, ntid_ntype_map, schema_map)
349
    memory_snapshot("NodeDataGenerationComplete: ", rank)
350
    edge_data = exchange_edge_data(rank, world_size, edge_data)
351
    memory_snapshot("ShuffleEdgeDataComplete: ", rank)
352
353
    return node_data, rcvd_node_features, rcvd_global_nids, edge_data

354
def read_dataset(rank, world_size, id_lookup, params, schema_map):
355
356
    """
    This function gets the dataset and performs post-processing on the data which is read from files.
357
    Additional information(columns) are added to nodes metadata like owner_process, global_nid which
358
359
    are later used in processing this information. For edge data, which is now a dictionary, we add new columns
    like global_edge_id and owner_process. Augmenting these data structure helps in processing these data structures
360
    when data shuffling is performed.
361
362
363
364
365

    Parameters:
    -----------
    rank : int
        rank of the current process
366
    world_size : int
367
        total no. of processes instantiated
368
369
370
    id_lookup : instance of class DistLookupService
       Distributed lookup service used to map global-nids to respective partition-ids and 
       shuffle-global-nids
371
    params : argparser object
372
        argument parser object to access command line arguments
373
374
    schema_map : dictionary
        dictionary created by reading the input graph metadata json file
375

376
    Returns :
377
378
    ---------
    dictionary
379
380
        in which keys are node-type names and values are are tuples representing the range of ids
        for nodes to be read by the current process
381
382
    dictionary
        node features which is a dictionary where keys are feature names and values are feature
383
        data as multi-dimensional tensors
384
385
386
387
388
    dictionary
        in which keys are node-type names and values are triplets. Each triplet has node-feature name
        and the starting and ending type ids of the node-feature data read from the corresponding
        node feature data file read by current process. Each node type may have several features and
        hence each key may have several triplets.
389
    dictionary
390
391
        edge data information is read from edges.txt and additional columns are added such as
        owner process for each edge.
392
393
394
395
    dictionary
        edge features which is also a dictionary, similar to node features dictionary
    """
    edge_features = {}
396
    #node_tids, node_features, edge_datadict, edge_tids
397
398
    node_tids, node_features, node_feat_tids, edge_data, edge_tids = \
        get_dataset(params.input_dir, params.graph_name, rank, world_size, schema_map)
399
    logging.info(f'[Rank: {rank}] Done reading dataset deom {params.input_dir}')
400

401
    edge_data = augment_edge_data(edge_data, id_lookup, edge_tids, rank, world_size)
402
    logging.info(f'[Rank: {rank}] Done augmenting edge_data: {len(edge_data)}, {edge_data[constants.GLOBAL_SRC_ID].shape}')
403

404
    return node_tids, node_features, node_feat_tids, edge_data, edge_features
405
406
407

def gen_dist_partitions(rank, world_size, params):
    """
408
409
    Function which will be executed by all Gloo processes to begin execution of the pipeline.
    This function expects the input dataset is split across multiple file format.
410

411
    Input dataset and its file structure is described in metadata json file which is also part of the
412
413
    input dataset. On a high-level, this metadata json file contains information about the following items
    a) Nodes metadata, It is assumed that nodes which belong to each node-type are split into p files
414
415
       (wherer `p` is no. of partitions).
    b) Similarly edge metadata contains information about edges which are split into p-files.
416
417
418
419
420
    c) Node and Edge features, it is also assumed that each node (and edge) feature, if present, is also
       split into `p` files.

    For example, a sample metadata json file might be as follows: :
    (In this toy example, we assume that we have "m" node-types, "k" edge types, and for node_type = ntype0-name
421
     we have two features namely feat0-name and feat1-name. Please note that the node-features are also split into
422
423
424
425
     `p` files. This will help in load-balancing during data-shuffling phase).

    Terminology used to identify any particular "id" assigned to nodes, edges or node features. Prefix "global" is
    used to indicate that this information is either read from the input dataset or autogenerated based on the information
426
427
428
429
    read from input dataset files. Prefix "type" is used to indicate a unique id assigned to either nodes or edges.
    For instance, type_node_id means that a unique id, with a given node type,  assigned to a node. And prefix "shuffle"
    will be used to indicate a unique id, across entire graph, assigned to either a node or an edge. For instance,
    SHUFFLE_GLOBAL_NID means a unique id which is assigned to a node after the data shuffle is completed.
430

431
432
    Some high-level notes on the structure of the metadata json file.
    1. path(s) mentioned in the entries for nodes, edges and node-features files can be either absolute or relative.
433
       if these paths are relative, then it is assumed that they are relative to the folder from which the execution is
434
435
436
437
       launched.
    2. The id_startx and id_endx represent the type_node_id and type_edge_id respectively for nodes and edge data. This
       means that these ids should match the no. of nodes/edges read from any given file. Since these are type_ids for
       the nodes and edges in any given file, their global_ids can be easily computed as well.
438
439

    {
440
441
442
443
        "graph_name" : xyz,
        "node_type" : ["ntype0-name", "ntype1-name", ....], #m node types
        "num_nodes_per_chunk" : [
            [a0, a1, ...a<p-1>], #p partitions
444
            [b0, b1, ... b<p-1>],
445
446
447
448
449
450
            ....
            [c0, c1, ..., c<p-1>] #no, of node types
        ],
        "edge_type" : ["src_ntype:edge_type:dst_ntype", ....], #k edge types
        "num_edges_per_chunk" : [
            [a0, a1, ...a<p-1>], #p partitions
451
            [b0, b1, ... b<p-1>],
452
453
454
            ....
            [c0, c1, ..., c<p-1>] #no, of edge types
        ],
455
456
        "node_data" : {
            "ntype0-name" : {
457
458
459
460
461
462
                "feat0-name" : {
                    "format" : {"name": "numpy"},
                    "data" :   [ #list of lists
                        ["<path>/feat-0.npy", 0, id_end0],
                        ["<path>/feat-1.npy", id_start1, id_end1],
                        ....
463
                        ["<path>/feat-<p-1>.npy", id_start<p-1>, id_end<p-1>]
464
465
466
                    ]
                },
                "feat1-name" : {
467
                    "format" : {"name": "numpy"},
468
469
470
471
                    "data" : [ #list of lists
                        ["<path>/feat-0.npy", 0, id_end0],
                        ["<path>/feat-1.npy", id_start1, id_end1],
                        ....
472
                        ["<path>/feat-<p-1>.npy", id_start<p-1>, id_end<p-1>]
473
474
                    ]
                }
475
476
            }
        },
477
        "edges": { #k edge types
478
            "src_ntype:etype0-name:dst_ntype" : {
479
                "format": {"name" : "csv", "delimiter" : " "},
480
481
482
483
484
485
                "data" : [
                    ["<path>/etype0-name-0.txt", 0, id_end0], #These are type_edge_ids for edges of this type
                    ["<path>/etype0-name-1.txt", id_start1, id_end1],
                    ...,
                    ["<path>/etype0-name-<p-1>.txt", id_start<p-1>, id_end<p-1>]
                ]
486
487
            },
            ...,
488
            "src_ntype:etype<k-1>-name:dst_ntype" : {
489
                "format": {"name" : "csv", "delimiter" : " "},
490
491
492
493
494
495
                "data" : [
                    ["<path>/etype<k-1>-name-0.txt", 0, id_end0],
                    ["<path>/etype<k-1>-name-1.txt", id_start1, id_end1],
                    ...,
                    ["<path>/etype<k-1>-name-<p-1>.txt", id_start<p-1>, id_end<p-1>]
                ]
496
497
            },
        },
498
    }
499

500
    The function performs the following steps:
501
    1. Reads the metis partitions to identify the owner process of all the nodes in the entire graph.
502
    2. Reads the input data set, each partitipating process will map to a single file for the edges,
503
504
505
        node-features and edge-features for each node-type and edge-types respectively. Using nodes metadata
        information, nodes which are owned by a given process are generated to optimize communication to some
        extent.
506
    3. Now each process shuffles the data by identifying the respective owner processes using metis
507
508
509
510
        partitions.
        a. To identify owner processes for nodes, metis partitions will be used.
        b. For edges, the owner process of the destination node will be the owner of the edge as well.
        c. For node and edge features, identifying the owner process is a little bit involved.
511
512
            For this purpose, graph metadata json file is used to first map the locally read node features
            to their global_nids. Now owner process is identified using metis partitions for these global_nids
513
514
515
516
517
518
519
            to retrieve shuffle_global_nids. A similar process is used for edge_features as well.
        d. After all the data shuffling is done, the order of node-features may be different when compared to
            their global_type_nids. Node- and edge-data are ordered by node-type and edge-type respectively.
            And now node features and edge features are re-ordered to match the order of their node- and edge-types.
    4. Last step is to create the DGL objects with the data present on each of the processes.
        a. DGL objects for nodes, edges, node- and edge- features.
        b. Metadata is gathered from each process to create the global metadata json file, by process rank = 0.
520
521
522
523
524
525
526
527
528
529
530

    Parameters:
    ----------
    rank : int
        integer representing the rank of the current process in a typical distributed implementation
    world_size : int
        integer representing the total no. of participating processes in a typical distributed implementation
    params : argparser object
        this object, key value pairs, provides access to the command line arguments from the runtime environment
    """
    global_start = timer()
531
    logging.info(f'[Rank: {rank}] Starting distributed data processing pipeline...')
532
    memory_snapshot("Pipeline Begin: ", rank)
533
    #init processing
534
535
    schema_map = read_json(os.path.join(params.input_dir, params.schema))

536
537
538
539
540
541
542
543
    #Initialize distributed lookup service for partition-id and shuffle-global-nids mappings
    #for global-nids
    _, global_nid_ranges = get_idranges(schema_map[constants.STR_NODE_TYPE], 
                                        schema_map[constants.STR_NUM_NODES_PER_CHUNK])
    id_map = dgl.distributed.id_map.IdMap(global_nid_ranges)
    id_lookup = DistLookupService(os.path.join(params.input_dir, params.partitions_dir),\
                                    schema_map[constants.STR_NODE_TYPE],\
                                    id_map, rank, world_size)
544
545

    ntypes_ntypeid_map, ntypes, ntypeid_ntypes_map = get_node_types(schema_map)
546
    logging.info(f'[Rank: {rank}] Initialized metis partitions and node_types map...')
547
548
549

    #read input graph files and augment these datastructures with
    #appropriate information (global_nid and owner process) for node and edge data
550
551
    node_tids, node_features, node_feat_tids, edge_data, edge_features = \
        read_dataset(rank, world_size, id_lookup, params, schema_map)
552
    logging.info(f'[Rank: {rank}] Done augmenting file input data with auxilary columns')
553
    memory_snapshot("DatasetReadComplete: ", rank)
554

555
    #send out node and edge data --- and appropriate features.
556
557
    #this function will also stitch the data recvd from other processes
    #and return the aggregated data
558
    ntypes_gnid_range_map = get_gnid_range_map(node_tids)
559
    node_data, rcvd_node_features, rcvd_global_nids, edge_data  = \
560
561
                    exchange_graph_data(rank, world_size, node_features, node_feat_tids,
                                        edge_data, id_lookup, ntypes_gnid_range_map,
562
                                        ntypeid_ntypes_map, schema_map)
563
    gc.collect()
564
    logging.info(f'[Rank: {rank}] Done with data shuffling...')
565
    memory_snapshot("DataShuffleComplete: ", rank)
566
567
568
569
570

    #sort node_data by ntype
    idx = node_data[constants.NTYPE_ID].argsort()
    for k, v in node_data.items():
        node_data[k] = v[idx]
571
572
    idx = None
    gc.collect()
573
    logging.info(f'[Rank: {rank}] Sorted node_data by node_type')
574

575

576
577
    #resolve global_ids for nodes
    assign_shuffle_global_nids_nodes(rank, world_size, node_data)
578
    logging.info(f'[Rank: {rank}] Done assigning global-ids to nodes...')
579
    memory_snapshot("ShuffleGlobalID_Nodes_Complete: ", rank)
580

581
    #shuffle node feature according to the node order on each rank.
582
583
584
    for ntype_name in ntypes:
        featnames = get_ntype_featnames(ntype_name, schema_map)
        for featname in featnames:
585
            #if a feature name exists for a node-type, then it should also have
586
587
588
            #feature data as well. Hence using the assert statement.
            assert(ntype_name+'/'+featname in rcvd_global_nids)
            global_nids = rcvd_global_nids[ntype_name+'/'+featname]
589
590
591
592

            common, idx1, idx2 = np.intersect1d(node_data[constants.GLOBAL_NID], global_nids, return_indices=True)
            shuffle_global_ids = node_data[constants.SHUFFLE_GLOBAL_NID][idx1]
            feature_idx = shuffle_global_ids.argsort()
593
            rcvd_node_features[ntype_name+'/'+featname] = rcvd_node_features[ntype_name+'/'+featname][feature_idx]
594
    memory_snapshot("ReorderNodeFeaturesComplete: ", rank)
595
596
597
598
599

    #sort edge_data by etype
    sorted_idx = edge_data[constants.ETYPE_ID].argsort()
    for k, v in edge_data.items():
        edge_data[k] = v[sorted_idx]
600
601
    sorted_idx = None
    gc.collect()
602
603

    shuffle_global_eid_start = assign_shuffle_global_nids_edges(rank, world_size, edge_data)
604
    logging.info(f'[Rank: {rank}] Done assigning global_ids to edges ...')
605
    memory_snapshot("ShuffleGlobalID_Edges_Complete: ", rank)
606
607

    #determine global-ids for edge end-points
608
    edge_data = lookup_shuffle_global_nids_edges(rank, world_size, edge_data, id_lookup, node_data)
609
    logging.info(f'[Rank: {rank}] Done resolving orig_node_id for local node_ids...')
610
    memory_snapshot("ShuffleGlobalID_Lookup_Complete: ", rank)
611
612
613
614
615

    #create dgl objects here
    start = timer()
    num_nodes = 0
    num_edges = shuffle_global_eid_start
616
617
    node_count = len(node_data[constants.NTYPE_ID])
    edge_count = len(edge_data[constants.ETYPE_ID])
618
619
620
    graph_obj, ntypes_map_val, etypes_map_val, ntypes_map, etypes_map, \
        orig_nids, orig_eids = create_dgl_object(schema_map, rank, node_data, \
            edge_data, num_edges, params.save_orig_nids, params.save_orig_eids)
621
    memory_snapshot("CreateDGLObjectsComplete: ", rank)
622
623
    write_dgl_objects(graph_obj, rcvd_node_features, edge_features, params.output, \
        rank, orig_nids, orig_eids)
624
    memory_snapshot("DiskWriteDGLObjectsComplete: ", rank)
625

626
    #get the meta-data
627
    json_metadata = create_metadata_json(params.graph_name, node_count, edge_count, \
628
                            rank, world_size, ntypes_map_val, \
629
                            etypes_map_val, ntypes_map, etypes_map, params.output)
630
    memory_snapshot("MetadataCreateComplete: ", rank)
631
632
633
634
635
636
637
638
639
640

    if (rank == 0):
        #get meta-data from all partitions and merge them on rank-0
        metadata_list = gather_metadata_json(json_metadata, rank, world_size)
        metadata_list[0] = json_metadata
        write_metadata_json(metadata_list, params.output, params.graph_name)
    else:
        #send meta-data to Rank-0 process
        gather_metadata_json(json_metadata, rank, world_size)
    end = timer()
641
    logging.info(f'[Rank: {rank}] Time to create dgl objects: {timedelta(seconds = end - start)}')
642
    memory_snapshot("MetadataWriteComplete: ", rank)
643
644

    global_end = timer()
645
    logging.info(f'[Rank: {rank}] Total execution time of the program: {timedelta(seconds = global_end - global_start)}')
646
    memory_snapshot("PipelineComplete: ", rank)
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

def single_machine_run(params):
    """ Main function for distributed implementation on a single machine

    Parameters:
    -----------
    params : argparser object
        Argument Parser structure with pre-determined arguments as defined
        at the bottom of this file.
    """
    log_params(params)
    processes = []
    mp.set_start_method("spawn")

    #Invoke `target` function from each of the spawned process for distributed
    #implementation
    for rank in range(params.world_size):
        p = mp.Process(target=run, args=(rank, params.world_size, gen_dist_partitions, params))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

def run(rank, world_size, func_exec, params, backend="gloo"):
    """
    Init. function which is run by each process in the Gloo ProcessGroup

    Parameters:
    -----------
    rank : integer
        rank of the process
    world_size : integer
        number of processes configured in the Process Group
    proc_exec : function name
        function which will be invoked which has the logic for each process in the group
    params : argparser object
        argument parser object to access the command line arguments
    backend : string
        string specifying the type of backend to use for communication
    """
    os.environ["MASTER_ADDR"] = '127.0.0.1'
    os.environ["MASTER_PORT"] = '29500'

    #create Gloo Process Group
    dist.init_process_group(backend, rank=rank, world_size=world_size, timeout=timedelta(seconds=5*60))

    #Invoke the main function to kick-off each process
    func_exec(rank, world_size, params)

def multi_machine_run(params):
    """
    Function to be invoked when executing data loading pipeline on multiple machines

    Parameters:
    -----------
    params : argparser object
        argparser object providing access to command line arguments.
    """
    rank = int(os.environ["RANK"])

    #init the gloo process group here.
709
710
711
712
    dist.init_process_group(
            backend="gloo",
            rank=rank,
            world_size=params.world_size,
713
            timeout=timedelta(seconds=params.process_group_timeout))
714
    logging.info(f'[Rank: {rank}] Done with process group initialization...')
715
716
717

    #invoke the main function here.
    gen_dist_partitions(rank, params.world_size, params)
718
    logging.info(f'[Rank: {rank}] Done with Distributed data processing pipeline processing.')