convert_partition.py 15.4 KB
Newer Older
1
2
import argparse
import gc
3
import json
4
5
import logging
import os
6
import time
7

8
import dgl
9
import numpy as np
10
import pandas as pd
11
12
import pyarrow
import torch as th
13
from pyarrow import csv
14
15
16
17

import constants
from utils import get_idranges, memory_snapshot, read_json

18

19
20
def create_dgl_object(schema, part_id, node_data, edge_data, edgeid_offset,
                        return_orig_nids=False, return_orig_eids=False):
21
22
23
24
    """
    This function creates dgl objects for a given graph partition, as in function
    arguments. 

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    The "schema" argument is a dictionary, which contains the metadata related to node ids
    and edge ids. It contains two keys: "nid" and "eid", whose value is also a dictionary
    with the following structure. 

    1. The key-value pairs in the "nid" dictionary has the following format.
       "ntype-name" is the user assigned name to this node type. "format" describes the 
       format of the contents of the files. and "data" is a list of lists, each list has
       3 elements: file-name, start_id and end_id. File-name can be either absolute or
       relative path to this file and starting and ending ids are type ids of the nodes 
       which are contained in this file. These type ids are later used to compute global ids
       of these nodes which are used throughout the processing of this pipeline. 
        "ntype-name" : {
            "format" : "csv", 
            "data" : [
                    [ <path-to-file>/ntype0-name-0.csv, start_id0, end_id0], 
                    [ <path-to-file>/ntype0-name-1.csv, start_id1, end_id1],
                    ...
                    [ <path-to-file>/ntype0-name-<p-1>.csv, start_id<p-1>, end_id<p-1>],
            ]
        }

    2. The key-value pairs in the "eid" dictionary has the following format.
       As described for the "nid" dictionary the "eid" dictionary is similarly structured
       except that these entries are for edges. 
        "etype-name" : {
            "format" : "csv", 
            "data" : [
                    [ <path-to-file>/etype0-name-0, start_id0, end_id0], 
                    [ <path-to-file>/etype0-name-1 start_id1, end_id1],
                    ...
                    [ <path-to-file>/etype0-name-1 start_id<p-1>, end_id<p-1>]
            ]
        }

    In "nid" dictionary, the type_nids are specified that
    should be assigned to nodes which are read from the corresponding nodes file. 
    Along the same lines dictionary for the key "eid" is used for edges in the 
    input graph.

    These type ids, for nodes and edges, are used to compute global ids for nodes
    and edges which are stored in the graph object.

67
68
69
70
71
72
73
74
75
76
77
78
79
80
    Parameters:
    -----------
    schame : json object
        json object created by reading the graph metadata json file
    part_id : int
        partition id of the graph partition for which dgl object is to be created
    node_data : numpy ndarray
        node_data, where each row is of the following format:
        <global_nid> <ntype_id> <global_type_nid>
    edge_data : numpy ndarray
        edge_data, where each row is of the following format: 
        <global_src_id> <global_dst_id> <etype_id> <global_type_eid>
    edgeid_offset : int
        offset to be used when assigning edge global ids in the current partition
81
82
    return_orig_ids : bool, optional
        Indicates whether to return original node/edge IDs.
83
84
85
86
87
88
89
90
91
92
93
94
95

    Returns: 
    --------
    dgl object
        dgl object created for the current graph partition
    dictionary
        map between node types and the range of global node ids used
    dictionary
        map between edge types and the range of global edge ids used
    dictionary
        map between node type(string)  and node_type_id(int)
    dictionary
        map between edge type(string)  and edge_type_id(int)
96
97
98
99
100
101
102
103
    dict of tensors
        If `return_orig_nids=True`, return a dict of 1D tensors whose key is the node type
        and value is a 1D tensor mapping between shuffled node IDs and the original node
        IDs for each node type. Otherwise, ``None`` is returned.
    dict of tensors
        If `return_orig_eids=True`, return a dict of 1D tensors whose key is the edge type
        and value is a 1D tensor mapping between shuffled edge IDs and the original edge
        IDs for each edge type. Otherwise, ``None`` is returned.
104
105
    """
    #create auxiliary data structures from the schema object
106
    memory_snapshot("CreateDGLObj_Begin", part_id)
107
108
109
    _, global_nid_ranges = get_idranges(schema[constants.STR_NODE_TYPE],
        schema[constants.STR_NUM_NODES_PER_CHUNK])
    memory_snapshot("CreateDGLObj_Begin", part_id)
110

111
    _, global_eid_ranges = get_idranges(schema[constants.STR_EDGE_TYPE],
112
                                    schema[constants.STR_NUM_EDGES_PER_CHUNK])
113

114
115
116
117
118
119
120
121
122
123
    id_map = dgl.distributed.id_map.IdMap(global_nid_ranges)

    ntypes = [(key, global_nid_ranges[key][0, 0]) for key in global_nid_ranges]
    ntypes.sort(key=lambda e: e[1])
    ntype_offset_np = np.array([e[1] for e in ntypes])
    ntypes = [e[0] for e in ntypes]
    ntypes_map = {e: i for i, e in enumerate(ntypes)}
    etypes = [(key, global_eid_ranges[key][0, 0]) for key in global_eid_ranges]
    etypes.sort(key=lambda e: e[1])
    etypes = [e[0] for e in etypes]
124
    etypes_map = {e.split(":")[1]: i for i, e in enumerate(etypes)}
125
126

    node_map_val = {ntype: [] for ntype in ntypes}
127
    edge_map_val = {etype.split(":")[1]: [] for etype in etypes}
128

129
130
131
132
133
134
135
136
137
138
139
140
141
    memory_snapshot("CreateDGLObj_AssignNodeData", part_id)
    shuffle_global_nids = node_data[constants.SHUFFLE_GLOBAL_NID]
    node_data.pop(constants.SHUFFLE_GLOBAL_NID)
    gc.collect()

    ntype_ids = node_data[constants.NTYPE_ID]
    node_data.pop(constants.NTYPE_ID)
    gc.collect()

    global_type_nid = node_data[constants.GLOBAL_TYPE_NID]
    node_data.pop(constants.GLOBAL_TYPE_NID)
    node_data = None
    gc.collect()
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    global_homo_nid = ntype_offset_np[ntype_ids] + global_type_nid
    assert np.all(shuffle_global_nids[1:] - shuffle_global_nids[:-1] == 1)
    shuffle_global_nid_range = (shuffle_global_nids[0], shuffle_global_nids[-1])


    # Determine the node ID ranges of different node types.
    for ntype_name in global_nid_ranges:
        ntype_id = ntypes_map[ntype_name]
        type_nids = shuffle_global_nids[ntype_ids == ntype_id]
        node_map_val[ntype_name].append(
            [int(type_nids[0]), int(type_nids[-1]) + 1])

    #process edges
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    memory_snapshot("CreateDGLObj_AssignEdgeData: ", part_id)
    shuffle_global_src_id = edge_data[constants.SHUFFLE_GLOBAL_SRC_ID]
    edge_data.pop(constants.SHUFFLE_GLOBAL_SRC_ID)
    gc.collect()

    shuffle_global_dst_id = edge_data[constants.SHUFFLE_GLOBAL_DST_ID]
    edge_data.pop(constants.SHUFFLE_GLOBAL_DST_ID)
    gc.collect()

    global_src_id = edge_data[constants.GLOBAL_SRC_ID]
    edge_data.pop(constants.GLOBAL_SRC_ID)
    gc.collect()

    global_dst_id = edge_data[constants.GLOBAL_DST_ID]
    edge_data.pop(constants.GLOBAL_DST_ID)
    gc.collect()

    global_edge_id = edge_data[constants.GLOBAL_TYPE_EID]
    edge_data.pop(constants.GLOBAL_TYPE_EID)
    gc.collect()

    etype_ids = edge_data[constants.ETYPE_ID]
    edge_data.pop(constants.ETYPE_ID)
    edge_data = None
    gc.collect()    
    logging.info(f'There are {len(shuffle_global_src_id)} edges in partition {part_id}')
182
183
184
185
186
187
188
189
190
191
192
193

    # It's not guaranteed that the edges are sorted based on edge type.
    # Let's sort edges and all attributes on the edges.
    sort_idx = np.argsort(etype_ids)
    shuffle_global_src_id, shuffle_global_dst_id, global_src_id, global_dst_id, global_edge_id, etype_ids = \
            shuffle_global_src_id[sort_idx], shuffle_global_dst_id[sort_idx], global_src_id[sort_idx], \
            global_dst_id[sort_idx], global_edge_id[sort_idx], etype_ids[sort_idx]
    assert np.all(np.diff(etype_ids) >= 0)

    # Determine the edge ID range of different edge types.
    edge_id_start = edgeid_offset 
    for etype_name in global_eid_ranges:
194
195
196
197
        tokens = etype_name.split(":")
        assert len(tokens) == 3
        etype_id = etypes_map[tokens[1]]
        edge_map_val[tokens[1]].append([edge_id_start,
198
199
                                         edge_id_start + np.sum(etype_ids == etype_id)])
        edge_id_start += np.sum(etype_ids == etype_id)
200
    memory_snapshot("CreateDGLObj_UniqueNodeIds: ", part_id)
201

202
203
204
    # get the edge list in some order and then reshuffle.
    # Here the order of nodes is defined by the `np.unique` function
    # node order is as listed in the uniq_ids array
205
    ids = np.concatenate(
206
207
        [shuffle_global_src_id, shuffle_global_dst_id,
            np.arange(shuffle_global_nid_range[0], shuffle_global_nid_range[1] + 1)])
208
209
210
    uniq_ids, idx, inverse_idx = np.unique(
        ids, return_index=True, return_inverse=True)
    assert len(uniq_ids) == len(idx)
211

212
213
    # We get the edge list with their node IDs mapped to a contiguous ID range.
    part_local_src_id, part_local_dst_id = np.split(inverse_idx[:len(shuffle_global_src_id) * 2], 2)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    inner_nodes = th.as_tensor(np.logical_and(
            uniq_ids >= shuffle_global_nid_range[0],
            uniq_ids <= shuffle_global_nid_range[1]))

    #get the list of indices, from inner_nodes, which will sort inner_nodes as [True, True, ...., False, False, ...]
    #essentially local nodes will be placed before non-local nodes.
    reshuffle_nodes = th.arange(len(uniq_ids))
    reshuffle_nodes = th.cat([reshuffle_nodes[inner_nodes.bool()],
                              reshuffle_nodes[inner_nodes == 0]])

    '''
    Following procedure is used to map the part_local_src_id, part_local_dst_id to account for
    reshuffling of nodes (to order localy owned nodes prior to non-local nodes in a partition)
    1. Form a node_map, in this case a numpy array, which will be used to map old node-ids (pre-reshuffling)
    to post-reshuffling ids.
    2. Once the map is created, use this map to map all the node-ids in the part_local_src_id 
    and part_local_dst_id list to their appropriate `new` node-ids (post-reshuffle order).
    3. Since only the node's order is changed, we will have to re-order nodes related information when
    creating dgl object: this includes orig_id, dgl.NTYPE, dgl.NID and inner_node.
    4. Edge's order is not changed. At this point in the execution path edges are still ordered by their etype-ids.
    5. Create the dgl object appropriately and return the dgl object.
    
    Here is a  simple example to understand the above flow better.

    part_local_nids = [0, 1, 2, 3, 4, 5]
    part_local_src_ids = [0, 0, 0, 0, 2, 3, 4]
    part_local_dst_ids = [1, 2, 3, 4, 4, 4, 5]

    Assume that nodes {1, 5} are halo-nodes, which are not owned by this partition.

    reshuffle_nodes = [0, 2, 3, 4, 1, 5]

    A node_map, which maps node-ids from old to reshuffled order is as follows:
    node_map = np.zeros((len(reshuffle_nodes,)))
    node_map[reshuffle_nodes] = np.arange(len(reshuffle_nodes))

    Using the above map, we have mapped part_local_src_ids and part_local_dst_ids as follows:
    part_local_src_ids = [0, 0, 0, 0, 1, 2, 3]
    part_local_dst_ids = [4, 1, 2, 3, 3, 3, 5]

    In this graph above, note that nodes {0, 1, 2, 3} are inner_nodes and {4, 5} are NON-inner-nodes

    Since the edge are re-ordered in any way, there is no reordering required for edge related data
    during the DGL object creation.
    '''
    #create the mappings to generate mapped part_local_src_id and part_local_dst_id
    #This map will map from unshuffled node-ids to reshuffled-node-ids (which are ordered to prioritize 
    #locally owned nodes).
    nid_map = np.zeros((len(reshuffle_nodes,)))
    nid_map[reshuffle_nodes] = np.arange(len(reshuffle_nodes))

    #Now map the edge end points to reshuffled_values.
    part_local_src_id, part_local_dst_id = nid_map[part_local_src_id], nid_map[part_local_dst_id]

    #create the graph here now.
    part_graph = dgl.graph(data=(part_local_src_id, part_local_dst_id), num_nodes=len(uniq_ids))
    part_graph.edata[dgl.EID] = th.arange(
        edgeid_offset, edgeid_offset + part_graph.number_of_edges(), dtype=th.int64)
    part_graph.edata['orig_id'] = th.as_tensor(global_edge_id)
    part_graph.edata[dgl.ETYPE] = th.as_tensor(etype_ids)
    part_graph.edata['inner_edge'] = th.ones(part_graph.number_of_edges(), dtype=th.bool)

    #compute per_type_ids and ntype for all the nodes in the graph.
    global_ids = np.concatenate(
            [global_src_id, global_dst_id, global_homo_nid])
    part_global_ids = global_ids[idx]
    part_global_ids = part_global_ids[reshuffle_nodes]
    ntype, per_type_ids = id_map(part_global_ids)

    #continue with the graph creation
    part_graph.ndata['orig_id'] = th.as_tensor(per_type_ids)
    part_graph.ndata[dgl.NTYPE] = th.as_tensor(ntype)
    part_graph.ndata[dgl.NID] = th.as_tensor(uniq_ids[reshuffle_nodes])
    part_graph.ndata['inner_node'] = inner_nodes[reshuffle_nodes]

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    orig_nids = None
    orig_eids = None
    if return_orig_nids:
        orig_nids = {}
        for ntype, ntype_id in ntypes_map.items():
            mask = th.logical_and(part_graph.ndata[dgl.NTYPE] == ntype_id,
                                    part_graph.ndata['inner_node'])
            orig_nids[ntype] = th.as_tensor(per_type_ids[mask])
    if return_orig_eids:
        orig_eids = {}
        for etype, etype_id in etypes_map.items():
            mask = th.logical_and(part_graph.edata[dgl.ETYPE] == etype_id,
                                    part_graph.edata['inner_edge'])
            orig_eids[etype] = th.as_tensor(global_edge_id[mask])


    return part_graph, node_map_val, edge_map_val, ntypes_map, etypes_map, \
        orig_nids, orig_eids
307

308
def create_metadata_json(graph_name, num_nodes, num_edges, part_id, num_parts, node_map_val, \
309
310
311
312
313
314
315
316
317
318
319
320
                            edge_map_val, ntypes_map, etypes_map, output_dir ):
    """
    Auxiliary function to create json file for the graph partition metadata

    Parameters:
    -----------
    graph_name : string
        name of the graph
    num_nodes : int
        no. of nodes in the graph partition
    num_edges : int
        no. of edges in the graph partition
321
322
    part_id : int
       integer indicating the partition id
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    num_parts : int
        total no. of partitions of the original graph
    node_map_val : dictionary
        map between node types and the range of global node ids used
    edge_map_val : dictionary
        map between edge types and the range of global edge ids used
    ntypes_map : dictionary
        map between node type(string)  and node_type_id(int)
    etypes_map : dictionary
        map between edge type(string)  and edge_type_id(int)
    output_dir : string
        directory where the output files are to be stored 

    Returns:
    --------
    dictionary
        map describing the graph information

    """
    part_metadata = {'graph_name': graph_name,
                     'num_nodes': num_nodes,
                     'num_edges': num_edges,
                     'part_method': 'metis',
                     'num_parts': num_parts,
                     'halo_hops': 1,
                     'node_map': node_map_val,
                     'edge_map': edge_map_val,
                     'ntypes': ntypes_map,
                     'etypes': etypes_map}

353
354
355
356
357
358
359
    part_dir = 'part' + str(part_id)
    node_feat_file = os.path.join(part_dir, "node_feat.dgl")
    edge_feat_file = os.path.join(part_dir, "edge_feat.dgl")
    part_graph_file = os.path.join(part_dir, "graph.dgl")
    part_metadata['part-{}'.format(part_id)] = {'node_feats': node_feat_file,
                                                'edge_feats': edge_feat_file,
                                                'part_graph': part_graph_file}
360
    return part_metadata