hetero_rgcn.py 24.9 KB
Newer Older
1
2
3
4
"""
This script is a GraphBolt counterpart of
``/examples/core/rgcn/hetero_rgcn.py``. It demonstrates how to use GraphBolt
to train a R-GCN model for node classification on the Open Graph Benchmark
5
6
7
8
(OGB) dataset "ogbn-mag" and "ogb-lsc-mag240m". For more details on "ogbn-mag",
please refer to the OGB website: (https://ogb.stanford.edu/docs/linkprop/). For
more details on "ogb-lsc-mag240m", please refer to the OGB website:
(https://ogb.stanford.edu/docs/lsc/mag240m/).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Paper [Modeling Relational Data with Graph Convolutional Networks]
(https://arxiv.org/abs/1703.06103).

This example highlights the user experience of GraphBolt while the model and
training/evaluation procedures are almost identical to the original DGL
implementation. Please refer to original DGL implementation for more details.

This flowchart describes the main functional sequence of the provided example.
main

├───> load_dataset
│     │
│     └───> Load dataset

├───> rel_graph_embed [HIGHLIGHT]
│     │
│     └───> Generate graph embeddings

├───> Instantiate RGCN model
│     │
│     ├───> RelGraphConvLayer (input to hidden)
│     │
│     └───> RelGraphConvLayer (hidden to output)

└───> run


      └───> Training loop

            ├───> EntityClassify.forward (RGCN model forward pass)

            └───> validate and test

                  └───> EntityClassify.evaluate
"""
import argparse
import itertools
import sys

import dgl.graphbolt as gb
import dgl.nn as dglnn

import psutil

import torch as th
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn import HeteroEmbedding
58
from ogb.lsc import MAG240MEvaluator
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from ogb.nodeproppred import Evaluator
from tqdm import tqdm


def load_dataset(dataset_name):
    """Load the dataset and return the graph, features, train/valid/test sets
    and the number of classes.

    Here, we use `BuiltInDataset` to load the dataset which returns graph,
    features, train/valid/test sets and the number of classes.
    """
    dataset = gb.BuiltinDataset(dataset_name).load()
    print(f"Loaded dataset: {dataset.tasks[0].metadata['name']}")

    graph = dataset.graph
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
    test_set = dataset.tasks[0].test_set
    num_classes = dataset.tasks[0].metadata["num_classes"]
79
    print(len(train_set), len(valid_set), len(test_set))
80
81
82
83
84

    return graph, features, train_set, valid_set, test_set, num_classes


def create_dataloader(
85
86
87
88
89
90
91
92
93
    name,
    graph,
    features,
    item_set,
    device,
    batch_size,
    fanouts,
    shuffle,
    num_workers,
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
):
    """Create a GraphBolt dataloader for training, validation or testing."""

    ###########################################################################
    # Initialize the ItemSampler to sample mini-batches from the dataset.
    # `item_set`:
    #   The set of items to sample from. This is typically the
    #   training, validation or test set.
    # `batch_size`:
    #   The number of nodes to sample in each mini-batch.
    # `shuffle`:
    #   Whether to shuffle the items in the dataset before sampling.
    datapipe = gb.ItemSampler(item_set, batch_size=batch_size, shuffle=shuffle)

    # Sample neighbors for each seed node in the mini-batch.
    # `graph`:
    #   The graph(CSCSamplingGraph) from which to sample neighbors.
    # `fanouts`:
    #   The number of neighbors to sample for each node in each layer.
    datapipe = datapipe.sample_neighbor(graph, fanouts=fanouts)

    # Fetch the features for each node in the mini-batch.
    # `features`:
    #   The feature store from which to fetch the features.
    # `node_feature_keys`:
    #   The node features to fetch. This is a dictionary where the keys are
    #   node types and the values are lists of feature names.
121
122
123
124
125
    node_feature_keys = {"paper": ["feat"]}
    if name == "ogb-lsc-mag240m":
        node_feature_keys["author"] = ["feat"]
        node_feature_keys["institution"] = ["feat"]
    datapipe = datapipe.fetch_feature(features, node_feature_keys)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

    # Move the mini-batch to the appropriate device.
    # `device`:
    #   The device to move the mini-batch to.
    datapipe = datapipe.copy_to(device)

    # Create a DataLoader from the datapipe.
    # `num_workers`:
    #   The number of worker processes to use for data loading.
    return gb.MultiProcessDataLoader(datapipe, num_workers=num_workers)


def extract_embed(node_embed, input_nodes):
    emb = node_embed(
        {ntype: input_nodes[ntype] for ntype in input_nodes if ntype != "paper"}
    )
    return emb


def rel_graph_embed(graph, embed_size):
    """Initialize a heterogenous embedding layer for all node types in the
    graph, except for the "paper" node type.

    The function constructs a dictionary 'node_num', where the keys are node
    types (ntype) and the values are the number of nodes for each type. This
    dictionary is used to create a HeteroEmbedding instance.

    (HIGHLIGHT)
    A HeteroEmbedding instance holds separate embedding layers for each node
    type, each with its own feature space of dimensionality
    (node_num[ntype], embed_size), where 'node_num[ntype]' is the number of
    nodes of type 'ntype' and 'embed_size' is the embedding dimension.

    The "paper" node type is specifically excluded, possibly because these nodes
    might already have predefined feature representations, and therefore, do not
    require an additional embedding layer.

    Parameters
    ----------
    graph : CSCSamplingGraph
        The graph for which to create the heterogenous embedding layer.
    embed_size : int
        The size of the embedding vectors.

    Returns
    --------
    HeteroEmbedding
        A heterogenous embedding layer for all node types in the graph, except
        for the "paper" node type.
    """
    node_num = {}
    node_type_to_id = graph.metadata.node_type_to_id
    node_type_offset = graph.node_type_offset
    for ntype, ntype_id in node_type_to_id.items():
        # Skip the "paper" node type.
        if ntype == "paper":
            continue
        node_num[ntype] = (
            node_type_offset[ntype_id + 1] - node_type_offset[ntype_id]
        )
    print(f"node_num for rel_graph_embed: {node_num}")
    return HeteroEmbedding(node_num, embed_size)


class RelGraphConvLayer(nn.Module):
    def __init__(
        self,
        in_size,
        out_size,
        ntypes,
        relation_names,
        activation=None,
        dropout=0.0,
    ):
        super(RelGraphConvLayer, self).__init__()
        self.in_size = in_size
        self.out_size = out_size
        self.ntypes = ntypes
        self.relation_names = relation_names
        self.activation = activation

        ########################################################################
        # (HIGHLIGHT) HeteroGraphConv is a graph convolution operator over
        # heterogeneous graphs. A dictionary is passed where the key is the
        # relation name and the value is the instance of GraphConv. norm="right"
        # is to divide the aggregated messages by each node’s in-degrees, which
        # is equivalent to averaging the received messages. weight=False and
        # bias=False as we will use our own weight matrices defined later.
        ########################################################################
        self.conv = dglnn.HeteroGraphConv(
            {
                rel: dglnn.GraphConv(
                    in_size, out_size, norm="right", weight=False, bias=False
                )
                for rel in relation_names
            }
        )

        # Create a separate Linear layer for each relationship. Each
        # relationship has its own weights which will be applied to the node
        # features before performing convolution.
        self.weight = nn.ModuleDict(
            {
                rel_name: nn.Linear(in_size, out_size, bias=False)
                for rel_name in self.relation_names
            }
        )

        # Create a separate Linear layer for each node type.
        # loop_weights are used to update the output embedding of each target node
        # based on its own features, thereby allowing the model to refine the node
        # representations. Note that this does not imply the existence of self-loop
        # edges in the graph. It is similar to residual connection.
        self.loop_weights = nn.ModuleDict(
            {
                ntype: nn.Linear(in_size, out_size, bias=True)
                for ntype in self.ntypes
            }
        )

        self.loop_weights = nn.ModuleDict(
            {
                ntype: nn.Linear(in_size, out_size, bias=True)
                for ntype in self.ntypes
            }
        )

        self.dropout = nn.Dropout(dropout)
        # Initialize parameters of the model.
        self.reset_parameters()

    def reset_parameters(self):
        for layer in self.weight.values():
            layer.reset_parameters()

        for layer in self.loop_weights.values():
            layer.reset_parameters()

    def forward(self, g, inputs):
        """
        Parameters
        ----------
        g : DGLGraph
            Input graph.
        inputs : dict[str, torch.Tensor]
            Node feature for each node type.

        Returns
        -------
        dict[str, torch.Tensor]
            New node features for each node type.
        """
        # Create a deep copy of the graph g with features saved in local
        # frames to prevent side effects from modifying the graph.
        g = g.local_var()

        # Create a dictionary of weights for each relationship. The weights
        # are retrieved from the Linear layers defined earlier.
        weight_dict = {
            rel_name: {"weight": self.weight[rel_name].weight.T}
            for rel_name in self.relation_names
        }

        # Create a dictionary of node features for the destination nodes in
        # the graph. We slice the node features according to the number of
        # destination nodes of each type. This is necessary because when
        # incorporating the effect of self-loop edges, we perform computations
        # only on the destination nodes' features. By doing so, we ensure the
        # feature dimensions match and prevent any misuse of incorrect node
        # features.
        inputs_dst = {
            k: v[: g.number_of_dst_nodes(k)] for k, v in inputs.items()
        }

        # Apply the convolution operation on the graph. mod_kwargs are
        # additional arguments for each relation function defined in the
        # HeteroGraphConv. In this case, it's the weights for each relation.
        hs = self.conv(g, inputs, mod_kwargs=weight_dict)

        def _apply(ntype, h):
            # Apply the `loop_weight` to the input node features, effectively
            # acting as a residual connection. This allows the model to refine
            # node embeddings based on its current features.
            h = h + self.loop_weights[ntype](inputs_dst[ntype])
            if self.activation:
                h = self.activation(h)
            return self.dropout(h)

        # Apply the function defined above for each node type. This will update
        # the node features using the `loop_weights`, apply the activation
        # function and dropout.
        return {ntype: _apply(ntype, h) for ntype, h in hs.items()}


class EntityClassify(nn.Module):
    def __init__(self, graph, in_size, out_size):
        super(EntityClassify, self).__init__()
        self.in_size = in_size
        self.hidden_size = 64
        self.out_size = out_size

        # Generate and sort a list of unique edge types from the input graph.
        # eg. ['writes', 'cites']
        etypes = list(graph.metadata.edge_type_to_id.keys())
        etypes = [gb.etype_str_to_tuple(etype)[1] for etype in etypes]
        self.relation_names = etypes
        self.relation_names.sort()
        self.dropout = 0.5
        ntypes = list(graph.metadata.node_type_to_id.keys())
        self.layers = nn.ModuleList()

        # First layer: transform input features to hidden features. Use ReLU
        # as the activation function and apply dropout for regularization.
        self.layers.append(
            RelGraphConvLayer(
                self.in_size,
                self.hidden_size,
                ntypes,
                self.relation_names,
                activation=F.relu,
                dropout=self.dropout,
            )
        )

        # Second layer: transform hidden features to output features. No
        # activation function is applied at this stage.
        self.layers.append(
            RelGraphConvLayer(
                self.hidden_size,
                self.out_size,
                ntypes,
                self.relation_names,
                activation=None,
            )
        )

    def reset_parameters(self):
        # Reset the parameters of each layer.
        for layer in self.layers:
            layer.reset_parameters()

    def forward(self, h, blocks):
        for layer, block in zip(self.layers, blocks):
            h = layer(block, h)
        return h


class Logger(object):
    r"""
    This class was taken directly from the PyG implementation and can be found
    here: https://github.com/snap-stanford/ogb/blob/master/examples/nodeproppre
    d/mag/logger.py

    This was done to ensure that performance was measured in precisely the same
    way
    """

    def __init__(self, runs):
        self.results = [[] for _ in range(runs)]

    def add_result(self, run, result):
        assert len(result) == 3
        assert run >= 0 and run < len(self.results)
        self.results[run].append(result)

    def print_statistics(self, run=None):
        if run is not None:
            result = 100 * th.tensor(self.results[run])
            argmax = result[:, 1].argmax().item()
            print(f"Run {run + 1:02d}:")
            print(f"Highest Train: {result[:, 0].max():.2f}")
            print(f"Highest Valid: {result[:, 1].max():.2f}")
            print(f"  Final Train: {result[argmax, 0]:.2f}")
            print(f"   Final Test: {result[argmax, 2]:.2f}")
        else:
            result = 100 * th.tensor(self.results)

            best_results = []
            for r in result:
                train1 = r[:, 0].max().item()
                valid = r[:, 1].max().item()
                train2 = r[r[:, 1].argmax(), 0].item()
                test = r[r[:, 1].argmax(), 2].item()
                best_results.append((train1, valid, train2, test))

            best_result = th.tensor(best_results)

            print("All runs:")
            r = best_result[:, 0]
            print(f"Highest Train: {r.mean():.2f} ± {r.std():.2f}")
            r = best_result[:, 1]
            print(f"Highest Valid: {r.mean():.2f} ± {r.std():.2f}")
            r = best_result[:, 2]
            print(f"  Final Train: {r.mean():.2f} ± {r.std():.2f}")
            r = best_result[:, 3]
            print(f"   Final Test: {r.mean():.2f} ± {r.std():.2f}")


424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def extract_node_features(name, block, data, node_embed, device):
    """Extract the node features from embedding layer or raw features."""
    if name == "ogbn-mag":
        # Extract node embeddings for the input nodes.
        node_features = extract_embed(node_embed, data.input_nodes)
        # Add the batch's raw "paper" features. Corresponds to the content
        # in the function `rel_graph_embed` comment.
        node_features.update({"paper": data.node_features[("paper", "feat")]})
    else:
        node_features = {
            ntype: block.srcnodes[ntype].data["feat"]
            for ntype in block.srctypes
        }
        # Original feature data are stored in float16 which is not supported
        # on CPU. Let's convert to float32 explicitly.
        if device == th.device("cpu"):
            node_features = {k: v.float() for k, v in node_features.items()}
    return node_features


444
445
@th.no_grad()
def evaluate(
446
447
448
449
450
451
452
453
454
    name,
    g,
    model,
    node_embed,
    device,
    item_set,
    features,
    num_workers,
    save_test_submission=False,
455
456
457
458
459
):
    # Switches the model to evaluation mode.
    model.eval()
    category = "paper"
    # An evaluator for the dataset.
460
461
462
463
    if name == "ogbn-mag":
        evaluator = Evaluator(name=name)
    else:
        evaluator = MAG240MEvaluator()
464
465
466
467
468
469
470
471
472
473
474
475
476
477

    # Initialize a neighbor sampler that samples all neighbors. The model
    # has 2 GNN layers, so we create a sampler of 2 layers.
    ######################################################################
    # [Why we need to sample all neighbors?]
    # During the testing phase, we use a `MultiLayerFullNeighborSampler` to
    # sample all neighbors for each node. This is done to achieve the most
    # accurate evaluation of the model's performance, despite the increased
    # computational cost. This contrasts with the training phase where we
    # prefer a balance between computational efficiency and model accuracy,
    # hence only a subset of neighbors is sampled.
    ######################################################################

    data_loader = create_dataloader(
478
        name,
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        g,
        features,
        item_set,
        device,
        batch_size=4096,
        fanouts=[-1, -1],
        shuffle=False,
        num_workers=num_workers,
    )

    # To store the predictions.
    y_hats = list()
    y_true = list()

    for data in tqdm(data_loader, desc="Inference"):
494
495
496
497
        blocks = data.to_dgl_blocks()
        node_features = extract_node_features(
            name, blocks[0], data, node_embed, device
        )
498
499

        # Generate predictions.
500
        logits = model(node_features, blocks)[category]
501
502
503
504
505

        # Apply softmax to the logits and get the prediction by selecting the
        # argmax.
        y_hat = logits.log_softmax(dim=-1).argmax(dim=1, keepdims=True)
        y_hats.append(y_hat.cpu())
506
        y_true.append(data.labels[category].long().cpu())
507
508
509
510
511

    y_pred = th.cat(y_hats, dim=0)
    y_true = th.cat(y_true, dim=0)
    y_true = th.unsqueeze(y_true, 1)

512
513
514
515
516
517
518
519
    if name == "ogb-lsc-mag240m":
        y_pred = y_pred.view(-1)
        y_true = y_true.view(-1)

    if save_test_submission:
        evaluator.save_test_submission(
            input_dict={"y_pred": y_pred}, dir_path=".", mode="test-dev"
        )
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    return evaluator.eval({"y_true": y_true, "y_pred": y_pred})["acc"]


def run(
    name,
    g,
    model,
    node_embed,
    optimizer,
    train_set,
    valid_set,
    test_set,
    logger,
    device,
    run_id,
    features,
    num_workers,
):
    print("start to run...")
    category = "paper"

    # Typically, the best Validation performance is obtained after
    # the 1st or 2nd epoch. This is why the max epoch is set to 3.
    for epoch in range(3):
        num_train = len(train_set)
        model.train()

        total_loss = 0

        data_loader = create_dataloader(
550
            name,
551
552
553
554
555
556
557
558
559
560
561
562
            g,
            features,
            train_set,
            device,
            batch_size=1024,
            fanouts=[25, 10],
            shuffle=True,
            num_workers=num_workers,
        )
        for data in tqdm(data_loader, desc=f"Training~Epoch {epoch:02d}"):
            # Fetch the number of seed nodes in the batch.
            num_seeds = data.seed_nodes[category].shape[0]
563
564
565
566
567
568
569
570

            # Convert MiniBatch to DGL Blocks.
            blocks = data.to_dgl_blocks()

            # Extract the node features from embedding layer or raw features.
            node_features = extract_node_features(
                name, blocks[0], data, node_embed, device
            )
571
572
573
574

            # Reset gradients.
            optimizer.zero_grad()
            # Generate predictions.
575
            logits = model(node_features, blocks)[category]
576
577

            y_hat = logits.log_softmax(dim=-1)
578
            loss = F.nll_loss(y_hat, data.labels[category].long())
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
            loss.backward()
            optimizer.step()

            total_loss += loss.item() * num_seeds

        loss = total_loss / num_train

        # Evaluate the model on the train/val/test set.
        print("Evaluating the model on the training set.")
        train_acc = evaluate(
            name, g, model, node_embed, device, train_set, features, num_workers
        )
        print("Finish evaluating on training set.")

        print("Evaluating the model on the validation set.")
        valid_acc = evaluate(
            name, g, model, node_embed, device, valid_set, features, num_workers
        )
        print("Finish evaluating on validation set.")

        print("Evaluating the model on the test set.")
        test_acc = evaluate(
601
602
603
604
605
606
607
608
609
            name,
            g,
            model,
            node_embed,
            device,
            test_set,
            features,
            num_workers,
            save_test_submission=(name == "ogb-lsc-mag240m"),
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
        )
        print("Finish evaluating on test set.")

        logger.add_result(run_id, (train_acc, valid_acc, test_acc))
        print(
            f"Run: {run_id + 1:02d}, "
            f"Epoch: {epoch +1 :02d}, "
            f"Loss: {loss:.4f}, "
            f"Train: {100 * train_acc:.2f}%, "
            f"Valid: {100 * valid_acc:.2f}%, "
            f"Test: {100 * test_acc:.2f}%"
        )
        print("Finish evaluating on test set.")

    return logger


def main(args):
    if args.gpu > 0:
        raise RuntimeError("GPU training is not supported.")
    device = th.device("cpu")

    # Initialize a logger.
    logger = Logger(args.runs)

    # Load dataset.
    g, features, train_set, valid_set, test_set, num_classes = load_dataset(
        args.dataset
    )

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    # TODO: featch from ``feature store``.
    if args.dataset == "ogbn-mag":
        feat_size = 128
    else:
        feat_size = 768

    # As `ogb-lsc-mag240m` is a large dataset, features of `author` and
    # `institution` are generated in advance and stored in the feature store.
    # For `ogbn-mag`, we generate the features on the fly.
    embed_layer = None
    if args.dataset == "ogbn-mag":
        # Create the embedding layer and move it to the appropriate device.
        embed_layer = rel_graph_embed(g, feat_size).to(device)
        print(
            "Number of embedding parameters: "
            f"{sum(p.numel() for p in embed_layer.parameters())}"
        )
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

    # Initialize the entity classification model.
    model = EntityClassify(g, feat_size, num_classes).to(device)

    print(
        "Number of model parameters: "
        f"{sum(p.numel() for p in model.parameters())}"
    )

    for run_id in range(args.runs):
        # [Why we need to reset the parameters?]
        # If parameters are not reset, the model will start with the
        # parameters learned from the last run, potentially resulting
        # in biased outcomes or sub-optimal performance if the model was
        # previously stuck in a poor local minimum.
672
673
        if embed_layer is not None:
            embed_layer.reset_parameters()
674
675
676
677
678
679
680
681
682
683
        model.reset_parameters()

        # `itertools.chain()` is a function in Python's itertools module.
        # It is used to flatten a list of iterables, making them act as
        # one big iterable.
        # In this context, the following code is used to create a single
        # iterable over the parameters of both the model and the embed_layer,
        # which is passed to the optimizer. The optimizer then updates all
        # these parameters during the training process.
        all_params = itertools.chain(
684
685
            model.parameters(),
            [] if embed_layer is None else embed_layer.parameters(),
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
        )
        optimizer = th.optim.Adam(all_params, lr=0.01)

        # `expected_max`` is the number of physical cores on your machine.
        # The `logical` parameter, when set to False, ensures that the count
        # returned is the number of physical cores instead of logical cores
        # (which could be higher due to technologies like Hyper-Threading).
        expected_max = int(psutil.cpu_count(logical=False))
        if args.num_workers >= expected_max:
            print(
                "[ERROR] You specified num_workers are larger than physical"
                f"cores, please set any number less than {expected_max}",
                file=sys.stderr,
            )
        logger = run(
            args.dataset,
            g,
            model,
            embed_layer,
            optimizer,
            train_set,
            valid_set,
            test_set,
            logger,
            device,
            run_id,
            features,
            args.num_workers,
        )

        logger.print_statistics(run_id)

    print("Final performance: ")
    logger.print_statistics()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GraphBolt RGCN")
    parser.add_argument(
        "--dataset",
        type=str,
        default="ogbn-mag",
728
        help="Dataset name. Possible values: ogbn-mag, ogb-lsc-mag240m",
729
    )
730
    parser.add_argument("--runs", type=int, default=5)
731
732
733
734
735
736
    parser.add_argument("--num_workers", type=int, default=0)
    parser.add_argument("--gpu", type=int, default=0)

    args = parser.parse_args()

    main(args)