neighbor_sampler.cu 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/**
 *  Copyright (c) 2023 by Contributors
 *  Copyright (c) 2023, GT-TDAlab (Muhammed Fatih Balin & Umit V. Catalyurek)
 * @file cuda/index_select_impl.cu
 * @brief Index select operator implementation on CUDA.
 */
#include <c10/core/ScalarType.h>
#include <c10/cuda/CUDAStream.h>
#include <curand_kernel.h>
#include <graphbolt/cuda_ops.h>
#include <graphbolt/cuda_sampling_ops.h>
#include <thrust/gather.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/transform_output_iterator.h>

#include <algorithm>
#include <array>
#include <cub/cub.cuh>
#include <cuda/std/tuple>
#include <limits>
#include <numeric>
#include <type_traits>

#include "../random.h"
#include "./common.h"
#include "./utils.h"

namespace graphbolt {
namespace ops {

constexpr int BLOCK_SIZE = 128;

/**
 * @brief Fills the random_arr with random numbers and the edge_ids array with
 * original edge ids. When random_arr is sorted along with edge_ids, the first
 * fanout elements of each row gives us the sampled edges.
 */
template <
    typename float_t, typename indptr_t, typename indices_t, typename weights_t,
    typename edge_id_t>
__global__ void _ComputeRandoms(
    const int64_t num_edges, const indptr_t* const sliced_indptr,
    const indptr_t* const sub_indptr, const indices_t* const csr_rows,
    const weights_t* const weights, const indices_t* const indices,
    const uint64_t random_seed, float_t* random_arr, edge_id_t* edge_ids) {
  int64_t i = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride = gridDim.x * blockDim.x;
  curandStatePhilox4_32_10_t rng;
  const auto labor = indices != nullptr;

  if (!labor) {
    curand_init(random_seed, i, 0, &rng);
  }

  while (i < num_edges) {
    const auto row_position = csr_rows[i];
    const auto row_offset = i - sub_indptr[row_position];
    const auto in_idx = sliced_indptr[row_position] + row_offset;

    if (labor) {
      constexpr uint64_t kCurandSeed = 999961;
      curand_init(kCurandSeed, random_seed, indices[in_idx], &rng);
    }

    const auto rnd = curand_uniform(&rng);
    const auto prob = weights ? weights[in_idx] : static_cast<weights_t>(1);
    const auto exp_rnd = -__logf(rnd);
    const float_t adjusted_rnd = prob > 0
                                     ? static_cast<float_t>(exp_rnd / prob)
                                     : std::numeric_limits<float_t>::infinity();
    random_arr[i] = adjusted_rnd;
    edge_ids[i] = row_offset;

    i += stride;
  }
}

template <typename indptr_t>
struct MinInDegreeFanout {
  const indptr_t* in_degree;
  int64_t fanout;
  __host__ __device__ auto operator()(int64_t i) {
    return static_cast<indptr_t>(
        min(static_cast<int64_t>(in_degree[i]), fanout));
  }
};

template <typename indptr_t, typename indices_t>
struct IteratorFunc {
  indptr_t* indptr;
  indices_t* indices;
  __host__ __device__ auto operator()(int64_t i) { return indices + indptr[i]; }
};

template <typename indptr_t>
struct AddOffset {
  indptr_t offset;
  template <typename edge_id_t>
  __host__ __device__ indptr_t operator()(edge_id_t x) {
    return x + offset;
  }
};

template <typename indptr_t, typename indices_t>
struct IteratorFuncAddOffset {
  indptr_t* indptr;
  indptr_t* sliced_indptr;
  indices_t* indices;
  __host__ __device__ auto operator()(int64_t i) {
    return thrust::transform_output_iterator{
        indices + indptr[i], AddOffset<indptr_t>{sliced_indptr[i]}};
  }
};

117
118
119
120
121
122
123
124
125
template <typename indptr_t, typename in_degree_iterator_t>
struct SegmentEndFunc {
  indptr_t* indptr;
  in_degree_iterator_t in_degree;
  __host__ __device__ auto operator()(int64_t i) {
    return indptr[i] + in_degree[i];
  }
};

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
c10::intrusive_ptr<sampling::FusedSampledSubgraph> SampleNeighbors(
    torch::Tensor indptr, torch::Tensor indices, torch::Tensor nodes,
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<torch::Tensor> type_per_edge,
    torch::optional<torch::Tensor> probs_or_mask) {
  TORCH_CHECK(
      fanouts.size() == 1, "Heterogenous sampling is not supported yet!");
  TORCH_CHECK(!replace, "Sampling with replacement is not supported yet!");
  // Assume that indptr, indices, nodes, type_per_edge and probs_or_mask
  // are all resident on the GPU. If not, it is better to first extract them
  // before calling this function.
  auto allocator = cuda::GetAllocator();
  const auto stream = cuda::GetCurrentStream();
  const auto num_rows = nodes.size(0);
  const auto fanout =
      fanouts[0] >= 0 ? fanouts[0] : std::numeric_limits<int64_t>::max();
  auto in_degree_and_sliced_indptr = SliceCSCIndptr(indptr, nodes);
  auto in_degree = std::get<0>(in_degree_and_sliced_indptr);
  auto max_in_degree = torch::empty(
      1,
      c10::TensorOptions().dtype(in_degree.scalar_type()).pinned_memory(true));
  AT_DISPATCH_INTEGRAL_TYPES(
      indptr.scalar_type(), "SampleNeighborsInDegree", ([&] {
        size_t tmp_storage_size = 0;
        cub::DeviceReduce::Max(
            nullptr, tmp_storage_size, in_degree.data_ptr<scalar_t>(),
            max_in_degree.data_ptr<scalar_t>(), num_rows, stream);
        auto tmp_storage = allocator.AllocateStorage<char>(tmp_storage_size);
        cub::DeviceReduce::Max(
            tmp_storage.get(), tmp_storage_size, in_degree.data_ptr<scalar_t>(),
            max_in_degree.data_ptr<scalar_t>(), num_rows, stream);
      }));
  auto sliced_indptr = std::get<1>(in_degree_and_sliced_indptr);
  auto sub_indptr = ExclusiveCumSum(in_degree);
  auto output_indptr = torch::empty_like(sub_indptr);
  auto coo_rows = CSRToCOO(sub_indptr, indices.scalar_type());
  const auto num_edges = coo_rows.size(0);
  const auto random_seed = RandomEngine::ThreadLocal()->RandInt(
      static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
  torch::Tensor picked_eids;
  torch::Tensor output_indices;
167
  torch::optional<torch::Tensor> output_type_per_edge;
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

  AT_DISPATCH_INTEGRAL_TYPES(
      indptr.scalar_type(), "SampleNeighborsIndptr", ([&] {
        using indptr_t = scalar_t;
        thrust::counting_iterator<int64_t> iota(0);
        auto sampled_degree = thrust::make_transform_iterator(
            iota, MinInDegreeFanout<indptr_t>{
                      in_degree.data_ptr<indptr_t>(), fanout});

        {  // Compute output_indptr.
          size_t tmp_storage_size = 0;
          cub::DeviceScan::ExclusiveSum(
              nullptr, tmp_storage_size, sampled_degree,
              output_indptr.data_ptr<indptr_t>(), num_rows + 1, stream);
          auto tmp_storage = allocator.AllocateStorage<char>(tmp_storage_size);
          cub::DeviceScan::ExclusiveSum(
              tmp_storage.get(), tmp_storage_size, sampled_degree,
              output_indptr.data_ptr<indptr_t>(), num_rows + 1, stream);
        }

        auto num_sampled_edges =
            cuda::CopyScalar{output_indptr.data_ptr<indptr_t>() + num_rows};

        // Find the smallest integer type to store the edge id offsets.
        // CSRToCOO had synch inside, so it is safe to read max_in_degree now.
        const int num_bits =
            cuda::NumberOfBits(max_in_degree.data_ptr<indptr_t>()[0]);
        std::array<int, 4> type_bits = {8, 16, 32, 64};
        const auto type_index =
            std::lower_bound(type_bits.begin(), type_bits.end(), num_bits) -
            type_bits.begin();
        std::array<torch::ScalarType, 5> types = {
            torch::kByte, torch::kInt16, torch::kInt32, torch::kLong,
            torch::kLong};
        auto edge_id_dtype = types[type_index];
        AT_DISPATCH_INTEGRAL_TYPES(
            edge_id_dtype, "SampleNeighborsEdgeIDs", ([&] {
              using edge_id_t = std::make_unsigned_t<scalar_t>;
              TORCH_CHECK(
                  num_bits <= sizeof(edge_id_t) * 8,
                  "Selected edge_id_t must be capable of storing edge_ids.");
              // Using bfloat16 for random numbers works just as reliably as
              // float32 and provides around %30 percent speedup.
              using rnd_t = nv_bfloat16;
              auto randoms = allocator.AllocateStorage<rnd_t>(num_edges);
              auto randoms_sorted = allocator.AllocateStorage<rnd_t>(num_edges);
              auto edge_id_segments =
                  allocator.AllocateStorage<edge_id_t>(num_edges);
              auto sorted_edge_id_segments =
                  allocator.AllocateStorage<edge_id_t>(num_edges);
              AT_DISPATCH_INTEGRAL_TYPES(
                  indices.scalar_type(), "SampleNeighborsIndices", ([&] {
                    using indices_t = scalar_t;
                    auto probs_or_mask_scalar_type = torch::kFloat32;
                    if (probs_or_mask.has_value()) {
                      probs_or_mask_scalar_type =
                          probs_or_mask.value().scalar_type();
                    }
                    GRAPHBOLT_DISPATCH_ALL_TYPES(
                        probs_or_mask_scalar_type, "SampleNeighborsProbs",
                        ([&] {
                          using probs_t = scalar_t;
                          probs_t* probs_ptr = nullptr;
                          if (probs_or_mask.has_value()) {
                            probs_ptr =
                                probs_or_mask.value().data_ptr<probs_t>();
                          }
                          const indices_t* indices_ptr =
                              layer ? indices.data_ptr<indices_t>() : nullptr;
                          const dim3 block(BLOCK_SIZE);
                          const dim3 grid(
                              (num_edges + BLOCK_SIZE - 1) / BLOCK_SIZE);
                          // Compute row and random number pairs.
                          CUDA_KERNEL_CALL(
                              _ComputeRandoms, grid, block, 0, stream,
                              num_edges, sliced_indptr.data_ptr<indptr_t>(),
                              sub_indptr.data_ptr<indptr_t>(),
                              coo_rows.data_ptr<indices_t>(), probs_ptr,
                              indices_ptr, random_seed, randoms.get(),
                              edge_id_segments.get());
                        }));
                  }));

              // Sort the random numbers along with edge ids, after
              // sorting the first fanout elements of each row will
              // give us the sampled edges.
              size_t tmp_storage_size = 0;
              CUDA_CALL(cub::DeviceSegmentedSort::SortPairs(
                  nullptr, tmp_storage_size, randoms.get(),
                  randoms_sorted.get(), edge_id_segments.get(),
                  sorted_edge_id_segments.get(), num_edges, num_rows,
                  sub_indptr.data_ptr<indptr_t>(),
                  sub_indptr.data_ptr<indptr_t>() + 1, stream));
              auto tmp_storage =
                  allocator.AllocateStorage<char>(tmp_storage_size);
              CUDA_CALL(cub::DeviceSegmentedSort::SortPairs(
                  tmp_storage.get(), tmp_storage_size, randoms.get(),
                  randoms_sorted.get(), edge_id_segments.get(),
                  sorted_edge_id_segments.get(), num_edges, num_rows,
                  sub_indptr.data_ptr<indptr_t>(),
                  sub_indptr.data_ptr<indptr_t>() + 1, stream));

              picked_eids = torch::empty(
                  static_cast<indptr_t>(num_sampled_edges),
                  nodes.options().dtype(indptr.scalar_type()));

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
              // Need to sort the sampled edges only when fanouts.size() == 1
              // since multiple fanout sampling case is automatically going to
              // be sorted.
              if (type_per_edge && fanouts.size() == 1) {
                // Ensuring sort result still ends up in sorted_edge_id_segments
                std::swap(edge_id_segments, sorted_edge_id_segments);
                auto sampled_segment_end_it = thrust::make_transform_iterator(
                    iota, SegmentEndFunc<indptr_t, decltype(sampled_degree)>{
                              sub_indptr.data_ptr<indptr_t>(), sampled_degree});
                size_t tmp_storage_size = 0;
                CUDA_CALL(cub::DeviceSegmentedSort::SortKeys(
                    nullptr, tmp_storage_size, edge_id_segments.get(),
                    sorted_edge_id_segments.get(), picked_eids.size(0),
                    num_rows, sub_indptr.data_ptr<indptr_t>(),
                    sampled_segment_end_it, stream));
                auto tmp_storage =
                    allocator.AllocateStorage<char>(tmp_storage_size);
                CUDA_CALL(cub::DeviceSegmentedSort::SortKeys(
                    tmp_storage.get(), tmp_storage_size, edge_id_segments.get(),
                    sorted_edge_id_segments.get(), picked_eids.size(0),
                    num_rows, sub_indptr.data_ptr<indptr_t>(),
                    sampled_segment_end_it, stream));
              }

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
              auto input_buffer_it = thrust::make_transform_iterator(
                  iota, IteratorFunc<indptr_t, edge_id_t>{
                            sub_indptr.data_ptr<indptr_t>(),
                            sorted_edge_id_segments.get()});
              auto output_buffer_it = thrust::make_transform_iterator(
                  iota, IteratorFuncAddOffset<indptr_t, indptr_t>{
                            output_indptr.data_ptr<indptr_t>(),
                            sliced_indptr.data_ptr<indptr_t>(),
                            picked_eids.data_ptr<indptr_t>()});
              constexpr int64_t max_copy_at_once =
                  std::numeric_limits<int32_t>::max();

              // Copy the sampled edge ids into picked_eids tensor.
              for (int64_t i = 0; i < num_rows; i += max_copy_at_once) {
                size_t tmp_storage_size = 0;
                CUDA_CALL(cub::DeviceCopy::Batched(
                    nullptr, tmp_storage_size, input_buffer_it + i,
                    output_buffer_it + i, sampled_degree + i,
                    std::min(num_rows - i, max_copy_at_once), stream));
                auto tmp_storage =
                    allocator.AllocateStorage<char>(tmp_storage_size);
                CUDA_CALL(cub::DeviceCopy::Batched(
                    tmp_storage.get(), tmp_storage_size, input_buffer_it + i,
                    output_buffer_it + i, sampled_degree + i,
                    std::min(num_rows - i, max_copy_at_once), stream));
              }
            }));

        output_indices = torch::empty(
            picked_eids.size(0),
            picked_eids.options().dtype(indices.scalar_type()));

        // Compute: output_indices = indices.gather(0, picked_eids);
        AT_DISPATCH_INTEGRAL_TYPES(
            indices.scalar_type(), "SampleNeighborsOutputIndices", ([&] {
              using indices_t = scalar_t;
              const auto exec_policy =
                  thrust::cuda::par_nosync(allocator).on(stream);
              thrust::gather(
                  exec_policy, picked_eids.data_ptr<indptr_t>(),
                  picked_eids.data_ptr<indptr_t>() + picked_eids.size(0),
                  indices.data_ptr<indices_t>(),
                  output_indices.data_ptr<indices_t>());
            }));
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

        if (type_per_edge) {
          // output_type_per_edge = type_per_edge.gather(0, picked_eids);
          // The commented out torch equivalent above does not work when
          // type_per_edge is on pinned memory. That is why, we have to
          // reimplement it, similar to the indices gather operation above.
          auto types = type_per_edge.value();
          output_type_per_edge = torch::empty(
              picked_eids.size(0),
              picked_eids.options().dtype(types.scalar_type()));
          AT_DISPATCH_INTEGRAL_TYPES(
              types.scalar_type(), "SampleNeighborsOutputTypePerEdge", ([&] {
                const auto exec_policy =
                    thrust::cuda::par_nosync(allocator).on(stream);
                thrust::gather(
                    exec_policy, picked_eids.data_ptr<indptr_t>(),
                    picked_eids.data_ptr<indptr_t>() + picked_eids.size(0),
                    types.data_ptr<scalar_t>(),
                    output_type_per_edge.value().data_ptr<scalar_t>());
              }));
        }
363
364
365
366
367
368
369
      }));

  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);

  return c10::make_intrusive<sampling::FusedSampledSubgraph>(
      output_indptr, output_indices, nodes, torch::nullopt,
370
      subgraph_reverse_edge_ids, output_type_per_edge);
371
372
373
374
}

}  //  namespace ops
}  //  namespace graphbolt