"src/geometry/cuda/geometry_op_impl.hip" did not exist on "81831111a5553f7c749d094a159dd748c39e6f28"
spmat_op_impl_csr.cu 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/spmat_op_impl_csr.cu
 * \brief CSR operator CPU implementation
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>
#include <numeric>
#include "../../runtime/cuda/cuda_common.h"
#include "./utils.h"
12
13
#include "./atomic.cuh"
#include "./dgl_cub.cuh"
14
15
16
17
18
19
20
21
22
23

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

24
template <DGLDeviceType XPU, typename IdType>
25
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
26
  cudaStream_t stream = runtime::getCurrentCUDAStream();
27
28
29
30
31
32
33
34
  const auto& ctx = csr.indptr->ctx;
  IdArray rows = aten::VecToIdArray<int64_t>({row}, sizeof(IdType) * 8, ctx);
  IdArray cols = aten::VecToIdArray<int64_t>({col}, sizeof(IdType) * 8, ctx);
  rows = rows.CopyTo(ctx);
  cols = cols.CopyTo(ctx);
  IdArray out = aten::NewIdArray(1, ctx, sizeof(IdType) * 8);
  const IdType* data = nullptr;
  // TODO(minjie): use binary search for sorted csr
35
  CUDA_KERNEL_CALL(dgl::cuda::_LinearSearchKernel,
36
      1, 1, 0, stream,
37
38
39
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(), data,
      rows.Ptr<IdType>(), cols.Ptr<IdType>(),
      1, 1, 1,
40
      static_cast<IdType*>(nullptr), static_cast<IdType>(-1), out.Ptr<IdType>());
41
  out = out.CopyTo(DGLContext{kDGLCPU, 0});
42
43
44
  return *out.Ptr<IdType>() != -1;
}

45
46
template bool CSRIsNonZero<kDGLCUDA, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDGLCUDA, int64_t>(CSRMatrix, int64_t, int64_t);
47

48
template <DGLDeviceType XPU, typename IdType>
49
50
51
52
53
54
55
56
57
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  if (rstlen == 0)
    return rst;
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
58
  cudaStream_t stream = runtime::getCurrentCUDAStream();
59
  const int nt = dgl::cuda::FindNumThreads(rstlen);
60
61
62
  const int nb = (rstlen + nt - 1) / nt;
  const IdType* data = nullptr;
  // TODO(minjie): use binary search for sorted csr
63
  CUDA_KERNEL_CALL(dgl::cuda::_LinearSearchKernel,
64
      nb, nt, 0, stream,
65
66
67
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(), data,
      row.Ptr<IdType>(), col.Ptr<IdType>(),
      row_stride, col_stride, rstlen,
68
      static_cast<IdType*>(nullptr), static_cast<IdType>(-1), rst.Ptr<IdType>());
69
70
71
  return rst != -1;
}

72
73
template NDArray CSRIsNonZero<kDGLCUDA, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDGLCUDA, int64_t>(CSRMatrix, NDArray, NDArray);
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

///////////////////////////// CSRHasDuplicate /////////////////////////////

/*!
 * \brief Check whether each row does not have any duplicate entries.
 * Assume the CSR is sorted.
 */
template <typename IdType>
__global__ void _SegmentHasNoDuplicate(
    const IdType* indptr, const IdType* indices,
    int64_t num_rows, int8_t* flags) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < num_rows) {
    bool f = true;
    for (IdType i = indptr[tx] + 1; f && i < indptr[tx + 1]; ++i) {
      f = (indices[i - 1] != indices[i]);
    }
    flags[tx] = static_cast<int8_t>(f);
    tx += stride_x;
  }
}


98
template <DGLDeviceType XPU, typename IdType>
99
100
101
102
bool CSRHasDuplicate(CSRMatrix csr) {
  if (!csr.sorted)
    csr = CSRSort(csr);
  const auto& ctx = csr.indptr->ctx;
103
  cudaStream_t stream = runtime::getCurrentCUDAStream();
104
105
106
107
  auto device = runtime::DeviceAPI::Get(ctx);
  // We allocate a workspace of num_rows bytes. It wastes a little bit memory but should
  // be fine.
  int8_t* flags = static_cast<int8_t*>(device->AllocWorkspace(ctx, csr.num_rows));
108
  const int nt = dgl::cuda::FindNumThreads(csr.num_rows);
109
  const int nb = (csr.num_rows + nt - 1) / nt;
110
  CUDA_KERNEL_CALL(_SegmentHasNoDuplicate,
111
      nb, nt, 0, stream,
112
113
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(),
      csr.num_rows, flags);
114
  bool ret = dgl::cuda::AllTrue(flags, csr.num_rows, ctx);
115
116
117
118
  device->FreeWorkspace(ctx, flags);
  return !ret;
}

119
120
template bool CSRHasDuplicate<kDGLCUDA, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDGLCUDA, int64_t>(CSRMatrix csr);
121
122
123

///////////////////////////// CSRGetRowNNZ /////////////////////////////

124
template <DGLDeviceType XPU, typename IdType>
125
126
127
128
129
130
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  const IdType cur = aten::IndexSelect<IdType>(csr.indptr, row);
  const IdType next = aten::IndexSelect<IdType>(csr.indptr, row + 1);
  return next - cur;
}

131
132
template int64_t CSRGetRowNNZ<kDGLCUDA, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDGLCUDA, int64_t>(CSRMatrix, int64_t);
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

template <typename IdType>
__global__ void _CSRGetRowNNZKernel(
    const IdType* vid,
    const IdType* indptr,
    IdType* out,
    int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    const IdType vv = vid[tx];
    out[tx] = indptr[vv + 1] - indptr[vv];
    tx += stride_x;
  }
}

149
template <DGLDeviceType XPU, typename IdType>
150
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
151
  cudaStream_t stream = runtime::getCurrentCUDAStream();
152
153
154
155
156
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
157
  const int nt = dgl::cuda::FindNumThreads(len);
158
  const int nb = (len + nt - 1) / nt;
159
  CUDA_KERNEL_CALL(_CSRGetRowNNZKernel,
160
      nb, nt, 0, stream,
161
162
163
164
      vid_data, indptr_data, rst_data, len);
  return rst;
}

165
166
template NDArray CSRGetRowNNZ<kDGLCUDA, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDGLCUDA, int64_t>(CSRMatrix, NDArray);
167
168
169

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

170
template <DGLDeviceType XPU, typename IdType>
171
172
173
174
175
176
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const int64_t offset = aten::IndexSelect<IdType>(csr.indptr, row) * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

177
178
template NDArray CSRGetRowColumnIndices<kDGLCUDA, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDGLCUDA, int64_t>(CSRMatrix, int64_t);
179
180
181

///////////////////////////// CSRGetRowData /////////////////////////////

182
template <DGLDeviceType XPU, typename IdType>
183
184
185
186
187
188
189
190
191
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const int64_t offset = aten::IndexSelect<IdType>(csr.indptr, row) * sizeof(IdType);
  if (aten::CSRHasData(csr))
    return csr.data.CreateView({len}, csr.data->dtype, offset);
  else
    return aten::Range(offset, offset + len, csr.indptr->dtype.bits, csr.indptr->ctx);
}

192
193
template NDArray CSRGetRowData<kDGLCUDA, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDGLCUDA, int64_t>(CSRMatrix, int64_t);
194
195
196

///////////////////////////// CSRSliceRows /////////////////////////////

197
template <DGLDeviceType XPU, typename IdType>
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  const int64_t num_rows = end - start;
  const IdType st_pos = aten::IndexSelect<IdType>(csr.indptr, start);
  const IdType ed_pos = aten::IndexSelect<IdType>(csr.indptr, end);
  const IdType nnz = ed_pos - st_pos;
  IdArray ret_indptr = aten::IndexSelect(csr.indptr, start, end + 1) - st_pos;
  // indices and data can be view arrays
  IdArray ret_indices = csr.indices.CreateView(
      {nnz}, csr.indices->dtype, st_pos * sizeof(IdType));
  IdArray ret_data;
  if (CSRHasData(csr))
    ret_data = csr.data.CreateView({nnz}, csr.data->dtype, st_pos * sizeof(IdType));
  else
    ret_data = aten::Range(st_pos, ed_pos,
                           csr.indptr->dtype.bits, csr.indptr->ctx);
  return CSRMatrix(num_rows, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
}

218
219
template CSRMatrix CSRSliceRows<kDGLCUDA, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDGLCUDA, int64_t>(CSRMatrix, int64_t, int64_t);
220
221
222
223
224
225
226
227
228
229
230
231
232

/*!
 * \brief Copy data segment to output buffers
 * 
 * For the i^th row r = row[i], copy the data from indptr[r] ~ indptr[r+1]
 * to the out_data from out_indptr[i] ~ out_indptr[i+1]
 *
 * If the provided `data` array is nullptr, write the read index to the out_data.
 *
 */
template <typename IdType, typename DType>
__global__ void _SegmentCopyKernel(
    const IdType* indptr, const DType* data,
233
    const IdType* row, int64_t length, int64_t n_row,
234
    const IdType* out_indptr, DType* out_data) {
235
  IdType tx = static_cast<IdType>(blockIdx.x) * blockDim.x + threadIdx.x;
236
237
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
238
    IdType rpos = dgl::cuda::_UpperBound(out_indptr, n_row, tx) - 1;
239
240
241
    IdType rofs = tx - out_indptr[rpos];
    const IdType u = row[rpos];
    out_data[tx] = data? data[indptr[u]+rofs] : indptr[u]+rofs;
242
243
244
245
    tx += stride_x;
  }
}

246
template <DGLDeviceType XPU, typename IdType>
247
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
248
  cudaStream_t stream = runtime::getCurrentCUDAStream();
249
250
251
252
  const int64_t len = rows->shape[0];
  IdArray ret_indptr = aten::CumSum(aten::CSRGetRowNNZ(csr, rows), true);
  const int64_t nnz = aten::IndexSelect<IdType>(ret_indptr, len);

253
254
255
  const int nt = 256;  // for better GPU usage of small invocations
  const int nb = (nnz + nt - 1) / nt;

256
  // Copy indices.
257
  IdArray ret_indices = NDArray::Empty({nnz}, csr.indptr->dtype, rows->ctx);
258
  CUDA_KERNEL_CALL(_SegmentCopyKernel,
259
      nb, nt, 0, stream,
260
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(),
261
      rows.Ptr<IdType>(), nnz, len,
262
263
      ret_indptr.Ptr<IdType>(), ret_indices.Ptr<IdType>());
  // Copy data.
264
  IdArray ret_data = NDArray::Empty({nnz}, csr.indptr->dtype, rows->ctx);
265
  CUDA_KERNEL_CALL(_SegmentCopyKernel,
266
      nb, nt, 0, stream,
267
      csr.indptr.Ptr<IdType>(), CSRHasData(csr)? csr.data.Ptr<IdType>() : nullptr,
268
      rows.Ptr<IdType>(), nnz, len,
269
270
271
272
273
274
      ret_indptr.Ptr<IdType>(), ret_data.Ptr<IdType>());
  return CSRMatrix(len, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
}

275
276
template CSRMatrix CSRSliceRows<kDGLCUDA, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDGLCUDA, int64_t>(CSRMatrix , NDArray);
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

///////////////////////////// CSRGetDataAndIndices /////////////////////////////

/*!
 * \brief Generate a 0-1 mask for each index that hits the provided (row, col)
 *        index.
 * 
 * Examples:
 * Given a CSR matrix (with duplicate entries) as follows:
 * [[0, 1, 2, 0, 0],
 *  [1, 0, 0, 0, 0],
 *  [0, 0, 1, 1, 0],
 *  [0, 0, 0, 0, 0]]
 * Given rows: [0, 1], cols: [0, 2, 3]
 * The result mask is: [0, 1, 1, 1, 0, 0]
 */
template <typename IdType>
__global__ void _SegmentMaskKernel(
    const IdType* indptr, const IdType* indices,
    const IdType* row, const IdType* col,
    int64_t row_stride, int64_t col_stride,
    int64_t length, IdType* mask) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    int rpos = tx * row_stride, cpos = tx * col_stride;
    const IdType r = row[rpos], c = col[cpos];
    for (IdType i = indptr[r]; i < indptr[r + 1]; ++i) {
      if (indices[i] == c) {
        mask[i] = 1;
      }
    }
    tx += stride_x;
  }
}

/*!
 * \brief Search for the insertion positions for needle in the hay.
 *
 * The hay is a list of sorted elements and the result is the insertion position
 * of each needle so that the insertion still gives sorted order.
 *
 * It essentially perform binary search to find lower bound for each needle
320
321
322
 * elements. Require the largest elements in the hay is larger than the given
 * needle elements. Commonly used in searching for row IDs of a given set of
 * coordinates.
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
 */
template <typename IdType>
__global__ void _SortedSearchKernel(
    const IdType* hay, int64_t hay_size,
    const IdType* needles, int64_t num_needles,
    IdType* pos) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < num_needles) {
    const IdType ele = needles[tx];
    // binary search
    IdType lo = 0, hi = hay_size - 1;
    while (lo < hi) {
      IdType mid = (lo + hi) >> 1;
      if (hay[mid] <= ele) {
        lo = mid + 1;
      } else {
        hi = mid;
      }
    }
    pos[tx] = (hay[hi] == ele)? hi : hi - 1;
    tx += stride_x;
  }
}

348
template <DGLDeviceType XPU, typename IdType>
349
350
351
352
353
354
355
356
357
358
359
360
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto len = std::max(rowlen, collen);
  if (len == 0)
    return {NullArray(), NullArray(), NullArray()};

  const auto& ctx = row->ctx;
  const auto nbits = row->dtype.bits;
  const int64_t nnz = csr.indices->shape[0];
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
361
  cudaStream_t stream = runtime::getCurrentCUDAStream();
362
363
364

  // Generate a 0-1 mask for matched (row, col) positions.
  IdArray mask = Full(0, nnz, nbits, ctx);
365
  const int nt = dgl::cuda::FindNumThreads(len);
366
  const int nb = (len + nt - 1) / nt;
367
  CUDA_KERNEL_CALL(_SegmentMaskKernel,
368
      nb, nt, 0, stream,
369
370
371
372
373
374
375
376
377
378
379
380
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(),
      row.Ptr<IdType>(), col.Ptr<IdType>(),
      row_stride, col_stride, len,
      mask.Ptr<IdType>());

  IdArray idx = AsNumBits(NonZero(mask), nbits);
  if (idx->shape[0] == 0)
    // No data. Return three empty arrays.
    return {idx, idx, idx};

  // Search for row index
  IdArray ret_row = NewIdArray(idx->shape[0], ctx, nbits);
381
  const int nt2 = dgl::cuda::FindNumThreads(idx->shape[0]);
382
  const int nb2 = (idx->shape[0] + nt - 1) / nt;
383
  CUDA_KERNEL_CALL(_SortedSearchKernel,
384
      nb2, nt2, 0, stream,
385
386
387
388
389
390
391
392
393
394
      csr.indptr.Ptr<IdType>(), csr.num_rows,
      idx.Ptr<IdType>(), idx->shape[0],
      ret_row.Ptr<IdType>());

  // Column & data can be obtained by index select.
  IdArray ret_col = IndexSelect(csr.indices, idx);
  IdArray ret_data = CSRHasData(csr)? IndexSelect(csr.data, idx) : idx;
  return {ret_row, ret_col, ret_data};
}

395
template std::vector<NDArray> CSRGetDataAndIndices<kDGLCUDA, int32_t>(
396
    CSRMatrix csr, NDArray rows, NDArray cols);
397
template std::vector<NDArray> CSRGetDataAndIndices<kDGLCUDA, int64_t>(
398
399
400
401
402
403
404
405
406
407
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRSliceMatrix /////////////////////////////

/*!
 * \brief Generate a 0-1 mask for each index whose column is in the provided set.
 *        It also counts the number of masked values per row.
 */
template <typename IdType>
__global__ void _SegmentMaskColKernel(
408
    const IdType* indptr, const IdType* indices, int64_t num_rows, int64_t num_nnz,
409
410
    const IdType* col, int64_t col_len,
    IdType* mask, IdType* count) {
411
  IdType tx = static_cast<IdType>(blockIdx.x) * blockDim.x + threadIdx.x;
412
  const int stride_x = gridDim.x * blockDim.x;
413
414
415
416
417
418
419
  while (tx < num_nnz) {
    IdType rpos = dgl::cuda::_UpperBound(indptr, num_rows, tx) - 1;
    IdType cur_c = indices[tx];
    IdType i = dgl::cuda::_BinarySearch(col, col_len, cur_c);
    if (i < col_len) {
      mask[tx] = 1;
      cuda::AtomicAdd(count+rpos, IdType(1));
420
421
422
423
424
    }
    tx += stride_x;
  }
}

425
template <DGLDeviceType XPU, typename IdType>
426
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
427
  cudaStream_t stream = runtime::getCurrentCUDAStream();
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  const auto& ctx = rows->ctx;
  const auto& dtype = rows->dtype;
  const auto nbits = dtype.bits;
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];

  if (new_nrows == 0 || new_ncols == 0)
    return CSRMatrix(new_nrows, new_ncols,
                     Full(0, new_nrows + 1, nbits, ctx),
                     NullArray(dtype, ctx), NullArray(dtype, ctx));

  // First slice rows
  csr = CSRSliceRows(csr, rows);

  if (csr.indices->shape[0] == 0)
    return CSRMatrix(new_nrows, new_ncols,
                     Full(0, new_nrows + 1, nbits, ctx),
                     NullArray(dtype, ctx), NullArray(dtype, ctx));

  // Generate a 0-1 mask for matched (row, col) positions.
  IdArray mask = Full(0, csr.indices->shape[0], nbits, ctx);
  // A count for how many masked values per row.
  IdArray count = NewIdArray(csr.num_rows, ctx, nbits);
451
452
453
454
455
456
457
458
459
460
461
462
463
464
  CUDA_CALL(cudaMemset(count.Ptr<IdType>(), 0, sizeof(IdType) * (csr.num_rows)));

  const int64_t nnz_csr = csr.indices->shape[0];
  const int nt = 256;

  // In general ``cols'' array is sorted. But it is not guaranteed.
  // Hence checking and sorting array first. Sorting is not in place.
  auto device = runtime::DeviceAPI::Get(ctx);
  auto cols_size = cols->shape[0];

  IdArray sorted_array = NewIdArray(cols->shape[0], ctx, cols->dtype.bits);
  auto ptr_sorted_cols = sorted_array.Ptr<IdType>();
  auto ptr_cols = cols.Ptr<IdType>();
  size_t workspace_size = 0;
465
  CUDA_CALL(cub::DeviceRadixSort::SortKeys(
466
       nullptr, workspace_size, ptr_cols, ptr_sorted_cols, cols->shape[0],
467
       0, sizeof(IdType)*8, stream));
468
  void *workspace = device->AllocWorkspace(ctx, workspace_size);
469
  CUDA_CALL(cub::DeviceRadixSort::SortKeys(
470
       workspace, workspace_size, ptr_cols, ptr_sorted_cols, cols->shape[0],
471
       0, sizeof(IdType)*8, stream));
472
473
474
475
  device->FreeWorkspace(ctx, workspace);

  // Execute SegmentMaskColKernel
  int nb = (nnz_csr + nt - 1) / nt;
476
  CUDA_KERNEL_CALL(_SegmentMaskColKernel,
477
      nb, nt, 0, stream,
478
479
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(), csr.num_rows, nnz_csr,
      ptr_sorted_cols, cols_size,
480
      mask.Ptr<IdType>(), count.Ptr<IdType>());
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

  IdArray idx = AsNumBits(NonZero(mask), nbits);
  if (idx->shape[0] == 0)
    return CSRMatrix(new_nrows, new_ncols,
                     Full(0, new_nrows + 1, nbits, ctx),
                     NullArray(dtype, ctx), NullArray(dtype, ctx));

  // Indptr needs to be adjusted according to the new nnz per row.
  IdArray ret_indptr = CumSum(count, true);

  // Column & data can be obtained by index select.
  IdArray ret_col = IndexSelect(csr.indices, idx);
  IdArray ret_data = CSRHasData(csr)? IndexSelect(csr.data, idx) : idx;

  // Relabel column
  IdArray col_hash = NewIdArray(csr.num_cols, ctx, nbits);
  Scatter_(cols, Range(0, cols->shape[0], nbits, ctx), col_hash);
  ret_col = IndexSelect(col_hash, ret_col);

  return CSRMatrix(new_nrows, new_ncols, ret_indptr,
                   ret_col, ret_data);
}

504
template CSRMatrix CSRSliceMatrix<kDGLCUDA, int32_t>(
505
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
506
template CSRMatrix CSRSliceMatrix<kDGLCUDA, int64_t>(
507
508
509
510
511
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

}  // namespace impl
}  // namespace aten
}  // namespace dgl