test_distributed_sampling.py 8.27 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
5
from dgl.distributed import sample_neighbors
Jinjing Zhou's avatar
Jinjing Zhou committed
6
7
8
9
10
11
12
13
14
15
16
17
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
from utils import get_local_usable_addr
from pathlib import Path

from dgl.distributed import DistGraphServer, DistGraph


18
def start_server(rank, tmpdir, disable_shared_mem, graph_name):
19
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1,
20
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem)
Jinjing Zhou's avatar
Jinjing Zhou committed
21
22
23
    g.start()


24
def start_sample_client(rank, tmpdir, disable_shared_mem):
25
26
    gpb = None
    if disable_shared_mem:
27
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_sampling.json', rank)
28
    dist_graph = DistGraph("rpc_ip_config.txt", "test_sampling", gpb=gpb)
Jinjing Zhou's avatar
Jinjing Zhou committed
29
30
31
32
33
34
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
    dgl.distributed.shutdown_servers()
    dgl.distributed.finalize_client()
    return sampled_graph


35
def check_rpc_sampling(tmpdir, num_server):
36
    ip_config = open("rpc_ip_config.txt", "w")
Jinjing Zhou's avatar
Jinjing Zhou committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
53
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
54
55
56
57
58
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
59
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_sampling():
    import tempfile
75
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
76
    with tempfile.TemporaryDirectory() as tmpdirname:
77
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
78

79
def check_rpc_sampling_shuffle(tmpdir, num_server):
80
    ip_config = open("rpc_ip_config.txt", "w")
Jinjing Zhou's avatar
Jinjing Zhou committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()
    
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
96
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
97
98
99
100
101
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
102
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
103
104
105
106
107
108
109
    print("Done sampling")
    for p in pserver_list:
        p.join()

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64)
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64)
    for i in range(num_server):
110
        part, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
Jinjing Zhou's avatar
Jinjing Zhou committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_sampling_shuffle():
    import tempfile
128
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
129
    with tempfile.TemporaryDirectory() as tmpdirname:
130
131
        check_rpc_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def check_standalone_sampling(tmpdir):
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    dist_graph = DistGraph(None, "test_sampling", conf_file=tmpdir / 'test_sampling.json')
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_standalone_sampling(Path(tmpdirname))

159
160
161
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
    if disable_shared_mem:
162
        _, _, _, gpb, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    dist_graph = DistGraph("rpc_ip_config.txt", "test_in_subgraph", gpb=gpb)
    sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
    dgl.distributed.shutdown_servers()
    dgl.distributed.finalize_client()
    return sampled_graph


def check_rpc_in_subgraph(tmpdir, num_server):
    ip_config = open("rpc_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
                    num_hops=1, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    time.sleep(3)
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    g = dgl.as_heterograph(g)
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    subg1 = dgl.in_subgraph(g, nodes)
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
    import tempfile
212
    os.environ['DGL_DIST_MODE'] = 'distributed'
213
214
215
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_in_subgraph(Path(tmpdirname), 2)

Jinjing Zhou's avatar
Jinjing Zhou committed
216
217
218
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
219
220
221
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_sampling(Path(tmpdirname))
        os.environ['DGL_DIST_MODE'] = 'distributed'
222
        check_rpc_in_subgraph(Path(tmpdirname), 2)
223
224
225
226
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)