train_dist.py 8.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
os.environ['DGLBACKEND']='pytorch'
from multiprocessing import Process
import argparse, time, math
import numpy as np
from functools import wraps
import tqdm

import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.data.utils import load_graphs
import dgl.function as fn
import dgl.nn.pytorch as dglnn

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from pyinstrument import Profiler

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from train_sampling import run, SAGE, compute_acc, evaluate, load_subtensor

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

def run(args, device, data):
    # Unpack data
    train_nid, val_nid, in_feats, n_classes, g = data
    # Create sampler
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')],
                              dgl.distributed.sample_neighbors)

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers)

    # Define model and optimizer
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
    model = model.to(device)
65
66
    if not args.standalone:
        model = th.nn.parallel.DistributedDataParallel(model)
67
68
69
70
71
72
73
74
75
76
77
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    train_size = th.sum(g.ndata['train_mask'][0:g.number_of_nodes()])

    # Training loop
    iter_tput = []
    profiler = Profiler()
    profiler.start()
    epoch = 0
78
    for epoch in range(args.num_epochs):
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        tic = time.time()

        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0
        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, blocks in enumerate(dataloader):
            tic_step = time.time()
            sample_time += tic_step - start

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            input_nodes = blocks[0].srcdata[dgl.NID]
            seeds = blocks[-1].dstdata[dgl.NID]

            # Load the input features as well as output labels
            start = time.time()
            batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device)
            copy_time += time.time() - start

            num_seeds += len(blocks[-1].dstdata[dgl.NID])
            num_inputs += len(blocks[0].srcdata[dgl.NID])
            # Compute loss and prediction
            start = time.time()
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            forward_end = time.time()
            optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_time += forward_end - start
            backward_time += compute_end - forward_end

            # Aggregate gradients in multiple nodes.
120
121
122
123
124
125
            if not args.standalone:
                for param in model.parameters():
                    if param.requires_grad and param.grad is not None:
                        th.distributed.all_reduce(param.grad.data,
                                                  op=th.distributed.ReduceOp.SUM)
                        param.grad.data /= args.num_client
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

            optimizer.step()
            update_time += time.time() - compute_end

            step_t = time.time() - tic_step
            step_time.append(step_t)
            iter_tput.append(num_seeds / (step_t))
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
                gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB | time {:.3f} s'.format(
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc, np.sum(step_time[-args.log_every:])))
            start = time.time()

        toc = time.time()
        print('Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format(
            toc - tic, sample_time, copy_time, forward_time, backward_time, update_time, num_seeds, num_inputs))
        epoch += 1


        toc = time.time()
        print('Epoch Time(s): {:.4f}'.format(toc - tic))
        #if epoch % args.eval_every == 0 and epoch != 0:
        #    eval_acc = evaluate(model, g, g.ndata['features'], g.ndata['labels'], val_nid, args.batch_size, device)
        #    print('Eval Acc {:.4f}'.format(eval_acc))

    profiler.stop()
    print(profiler.output_text(unicode=True, color=True))
    # clean up
155
156
157
158
    if not args.standalone:
        g._client.barrier()
        dgl.distributed.shutdown_servers()
        dgl.distributed.finalize_client()
159
160

def main(args):
161
162
163
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')
    g = dgl.distributed.DistGraph(args.ip_config, args.graph_name, conf_file=args.conf_path)
164
    print('rank:', g.rank())
165

166
167
168
    train_nid = dgl.distributed.node_split(g.ndata['train_mask'], g.get_partition_book(), force_even=True)
    val_nid = dgl.distributed.node_split(g.ndata['val_mask'], g.get_partition_book(), force_even=True)
    test_nid = dgl.distributed.node_split(g.ndata['test_mask'], g.get_partition_book(), force_even=True)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    print('part {}, train: {}, val: {}, test: {}'.format(g.rank(), len(train_nid),
                                                         len(val_nid), len(test_nid)))
    device = th.device('cpu')
    n_classes = len(th.unique(g.ndata['labels'][np.arange(g.number_of_nodes())]))

    # Pack data
    in_feats = g.ndata['features'].shape[1]
    data = train_nid, val_nid, in_feats, n_classes, g
    run(args, device, data)
    print("parent ends")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument('--graph-name', type=str, help='graph name')
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip_config', type=str, help='The file for IP configuration')
    parser.add_argument('--conf_path', type=str, help='The path to the partition config file')
    parser.add_argument('--num-client', type=int, help='The number of clients')
    parser.add_argument('--n-classes', type=int, help='the number of classes')
    parser.add_argument('--gpu', type=int, default=0,
        help="GPU device ID. Use -1 for CPU training")
    parser.add_argument('--num-epochs', type=int, default=20)
    parser.add_argument('--num-hidden', type=int, default=16)
    parser.add_argument('--num-layers', type=int, default=2)
    parser.add_argument('--fan-out', type=str, default='10,25')
    parser.add_argument('--batch-size', type=int, default=1000)
    parser.add_argument('--log-every', type=int, default=20)
    parser.add_argument('--eval-every', type=int, default=5)
    parser.add_argument('--lr', type=float, default=0.003)
    parser.add_argument('--dropout', type=float, default=0.5)
    parser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
203
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
204
205
206
    args = parser.parse_args()

    print(args)
207
    main(args)