dataset_utils.py 24.6 KB
Newer Older
1
import logging
2
import os
3
import gc
4

5
import numpy as np
6
import pyarrow
7
import torch
8
import torch.distributed as dist
9

10
import array_readwriter
11
import constants
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from utils import get_idranges, map_partid_rank, generate_read_list
from gloo_wrapper import alltoallv_cpu


DATA_TYPE_ID = {
    data_type: id for id, data_type in enumerate([
        torch.float32,
        torch.float64,
        torch.float16,
        torch.uint8,
        torch.int8,
        torch.int16,
        torch.int32,
        torch.int64,
        torch.bool,
    ])
}


REV_DATA_TYPE_ID = {
    id: data_type for data_type, id in DATA_TYPE_ID.items()
}


def _shuffle_data(data, rank, world_size, tids, num_parts):
    '''Each process scatters loaded data to all processes in a group and
    return gathered data.

    Parameters
    ----------

    data: tensor
        Loaded node or edge data.
    rank: int
        Rank of current process.
    world_size: int
        Total number of processes in group.
    tids: list[tuple]
        Type-wise node/edge IDs.
    num_parts: int
        Number of partitions.

    Returns
    -------

    shuffled_data: tensor
        Shuffled node or edge data.
    '''
    # Broadcast basic information of loaded data:
    #   1. number of data lines
    #   2. data dimension
    #   3. data type
    assert len(data.shape) in [1, 2], (
        f"Data is expected to be 1-D or 2-D but got {data.shape}."
    )
    data_shape = list(data.shape)
    if len(data_shape) == 1:
        data_shape.append(1)
    data_shape.append(DATA_TYPE_ID[data.dtype])
    data_shape = torch.tensor(data_shape, dtype=torch.int64)

    data_shape_output = [
        torch.zeros_like(data_shape) for _ in range(world_size)
    ]
    dist.all_gather(data_shape_output, data_shape)

    # Rank~0 always succeeds to load non-empty data, so we fetch info from it.
    data_dim = data_shape_output[0][1].item()
    data_type = REV_DATA_TYPE_ID[data_shape_output[0][2].item()]
    data_lines = [data_shape[0].item() for data_shape in data_shape_output]
    data_lines.insert(0, 0)
    data_lines = np.cumsum(data_lines)

    # prepare for scatter
    data_list = [None] * world_size
    if data.shape[0] > 0:
        for local_part_id in range(num_parts):
            target_rank = map_partid_rank(local_part_id, world_size)
            start, end = tids[local_part_id]
            global_start = data_lines[rank]
            global_end = data_lines[rank + 1]
            if start >= global_end or end <= global_start:
                continue
            read_start = max(0, start - global_start)
            read_end = min(data.shape[0], end - global_start)
            if data_list[target_rank] is None:
                data_list[target_rank] = []
            data_list[target_rank].append(data[read_start:read_end])
    data_input = [None] * world_size
    for i, data in enumerate(data_list):
        if data is None or len(data) == 0:
            if data_dim == 1:
                data_input[i] = torch.zeros((0,), dtype=data_type)
            else:
                data_input[i] = torch.zeros((0, data_dim), dtype=data_type)
        else:
            data_input[i] = torch.cat(data).to(dtype=data_type)
    del data_list
    gc.collect()

    local_data = data_input[rank]
    if data_dim == 1:
        data_input[rank] = torch.zeros((0,), dtype=data_type)
    else:
        data_input[rank] = torch.zeros((0, data_dim), dtype=data_type)

    # scatter and gather data
    data_output = alltoallv_cpu(rank, world_size, data_input)
    data_output[rank] = local_data
    data_output = [data for data in data_output if data is not None]
    data_output = torch.cat(data_output)

    return data_output
125

126

127
def get_dataset(input_dir, graph_name, rank, world_size, num_parts, schema_map):
128
129
130
131
132
133
134
135
136
137
138
    """
    Function to read the multiple file formatted dataset. 

    Parameters:
    -----------
    input_dir : string
        root directory where dataset is located.
    graph_name : string
        graph name string
    rank : int
        rank of the current process
139
140
    world_size : int
        total number of process in the current execution
141
142
    num_parts : int
        total number of output graph partitions
143
144
145
    schema_map : dictionary
        this is the dictionary created by reading the graph metadata json file
        for the input graph dataset
146
147
148
149

    Return:
    -------
    dictionary
150
151
152
153
        where keys are node-type names and values are tuples. Each tuple represents the
        range of type ids read from a file by the current process. Please note that node
        data for each node type is split into "p" files and each one of these "p" files are
        read a process in the distributed graph partitioning pipeline
154
155
156
157
    dictionary
        Data read from numpy files for all the node features in this dataset. Dictionary built 
        using this data has keys as node feature names and values as tensor data representing 
        node features
158
159
160
161
    dictionary
        in which keys are node-type and values are a triplet. This triplet has node-feature name, 
        and range of tids for the node feature data read from files by the current process. Each
        node-type may have mutiple feature(s) and associated tensor data.
162
163
164
    dictionary
        Data read from edges.txt file and used to build a dictionary with keys as column names 
        and values as columns in the csv file. 
165
166
167
168
    dictionary
        in which keys are edge-type names and values are triplets. This triplet has edge-feature name, 
        and range of tids for theedge feature data read from the files by the current process. Each
        edge-type may have several edge features and associated tensor data.
169
170
171
172
173
174
175
176
    dictionary
        Data read from numpy files for all the edge features in this dataset. This dictionary's keys
        are feature names and values are tensors data representing edge feature data.
    dictionary
        This dictionary is used for identifying the global-id range for the associated edge features
        present in the previous return value. The keys are edge-type names and values are triplets.
        Each triplet consists of edge-feature name and starting and ending points of the range of 
        tids representing the corresponding edge feautres.
177
    """
178

179
    #node features dictionary
180
181
182
183
184
185
    #TODO: With the new file format, It is guaranteed that the input dataset will have 
    #no. of nodes with features (node-features) files and nodes metadata will always be the same.
    #This means the dimension indicating the no. of nodes in any node-feature files and the no. of
    #nodes in the corresponding nodes metadata file will always be the same. With this guarantee, 
    #we can eliminate the `node_feature_tids` dictionary since the same information is also populated
    #in the `node_tids` dictionary. This will be remnoved in the next iteration of code changes.
186
    node_features = {}
187
    node_feature_tids = {}
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    
    '''
    The structure of the node_data is as follows, which is present in the input metadata json file. 
       "node_data" : {
            "ntype0-name" : {
                "feat0-name" : {
                    "format" : {"name": "numpy"},
                    "data" :   [ #list
                        "<path>/feat-0.npy",
                        "<path>/feat-1.npy",
                        ....
                        "<path>/feat-<p-1>.npy"
                    ]
                },
                "feat1-name" : {
                    "format" : {"name": "numpy"}, 
                    "data" : [ #list 
                        "<path>/feat-0.npy",
                        "<path>/feat-1.npy",
                        ....
                        "<path>/feat-<p-1>.npy"
                    ]
                }
            }
       }

    As shown above, the value for the key "node_data" is a dictionary object, which is 
    used to describe the feature data for each of the node-type names. Keys in this top-level
    dictionary are node-type names and value is a dictionary which captures all the features
    for the current node-type. Feature data is captured with keys being the feature-names and
    value is a dictionary object which has 2 keys namely format and data. Format entry is used
    to mention the format of the storage used by the node features themselves and "data" is used
    to mention all the files present for this given node feature.

    Data read from each of the node features file is a multi-dimensional tensor data and is read
223
    in numpy or parquet format, which is also the storage format of node features on the permanent storage.
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        "node_type" : ["ntype0-name", "ntype1-name", ....], #m node types
        "num_nodes_per_chunk" : [
            [a0, a1, ...a<p-1>], #p partitions
            [b0, b1, ... b<p-1>], 
            ....
            [c0, c1, ..., c<p-1>] #no, of node types
        ],

    The "node_type" points to a list of all the node names present in the graph
    And "num_nodes_per_chunk" is used to mention no. of nodes present in each of the
    input nodes files. These node counters are used to compute the type_node_ids as
    well as global node-ids by using a simple cumulative summation and maitaining an
    offset counter to store the end of the current.

    Since nodes are NOT actually associated with any additional metadata, w.r.t to the processing
    involved in this pipeline this information is not needed to be stored in files. This optimization
    saves a considerable amount of time when loading massively large datasets for paritioning. 
    As opposed to reading from files and performing shuffling process each process/rank generates nodes
    which are owned by that particular rank. And using the "num_nodes_per_chunk" information each
    process can easily compute any nodes per-type node_id and global node_id.
    The node-ids are treated as int64's in order to support billions of nodes in the input graph.
    '''
247

248
    #read my nodes for each node type
249
    node_tids, ntype_gnid_offset = get_idranges(schema_map[constants.STR_NODE_TYPE], 
250
                                    schema_map[constants.STR_NUM_NODES_PER_CHUNK],
251
252
253
254
255
256
257
258
259
                                    num_chunks=num_parts)

    #iterate over the "node_data" dictionary in the schema_map
    #read the node features if exists
    #also keep track of the type_nids for which the node_features are read.
    dataset_features = schema_map[constants.STR_NODE_DATA]
    if((dataset_features is not None) and (len(dataset_features) > 0)):
        for ntype_name, ntype_feature_data in dataset_features.items():
            for feat_name, feat_data in ntype_feature_data.items():
260
261
                assert (feat_data[constants.STR_FORMAT][constants.STR_NAME]
                in [constants.STR_NUMPY, constants.STR_PARQUET])
262
                # It is guaranteed that num_chunks is always greater 
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
                # than num_partitions.
                node_data = []
                num_files = len(feat_data[constants.STR_DATA])
                if num_files == 0:
                    continue
                reader_fmt_meta = {
                    "name": feat_data[constants.STR_FORMAT][constants.STR_NAME]
                }
                read_list = generate_read_list(num_files, world_size)
                for idx in read_list[rank]:
                    data_file = feat_data[constants.STR_DATA][idx]
                    if not os.path.isabs(data_file):
                        data_file = os.path.join(input_dir, data_file)
                    node_data.append(
                        array_readwriter.get_array_parser(
                            **reader_fmt_meta
                        ).read(data_file)
                    )
                if len(node_data) > 0:
                    node_data = np.concatenate(node_data)
                else:
                    node_data = np.array([])
                node_data = torch.from_numpy(node_data)

                # scatter and gather data.
                node_data = _shuffle_data(
                    node_data,
                    rank,
                    world_size,
                    node_tids[ntype_name],
                    num_parts)

                # collect data on current rank.
                offset = 0
297
298
299
300
                for local_part_id in range(num_parts):
                    if map_partid_rank(local_part_id, world_size) == rank:
                        nfeat = []
                        nfeat_tids = []
301
302
303
304
                        start, end = node_tids[ntype_name][local_part_id]         
                        nfeat = node_data[offset : offset + end - start]
                        data_key = f"{ntype_name}/{feat_name}/{local_part_id//world_size}"
                        node_features[data_key] = nfeat
305
                        nfeat_tids.append(node_tids[ntype_name][local_part_id])
306
307
                        node_feature_tids[data_key] = nfeat_tids
                        offset += end - start
308

309
    #done building node_features locally. 
310
    if len(node_features) <= 0:
311
        logging.info(f'[Rank: {rank}] This dataset does not have any node features')
312
    else:
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        assert len(node_features) == len(node_feature_tids)

        # Note that the keys in the node_features dictionary are as follows:
        # `ntype_name/feat_name/local_part_id`. 
        #   where ntype_name and feat_name are self-explanatory, and 
        #   local_part_id indicates the partition-id, in the context of current
        #   process which take the values 0, 1, 2, ....
        for feat_name, feat_info  in node_features.items():
            logging.info(f'[Rank: {rank}] node feature name: {feat_name}, feature data shape: {feat_info.size()}')

            tokens = feat_name.split("/")
            assert len(tokens) == 3

            # Get the range of type ids which are mapped to the current node.
            tids = node_feature_tids[feat_name]

            # Iterate over the range of type ids for the current node feature
            # and count the number of features for this feature name.
            count = tids[0][1] - tids[0][0]
332
            assert count == feat_info.size()[0], f"{feat_name}, {count} vs {feat_info.size()[0]}."
333

334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    '''
    Reading edge features now.
    The structure of the edge_data is as follows, which is present in the input metadata json file. 
       "edge_data" : {
            "etype0-name" : {
                "feat0-name" : {
                    "format" : {"name": "numpy"},
                    "data" :   [ #list
                        "<path>/feat-0.npy",
                        "<path>/feat-1.npy",
                        ....
                        "<path>/feat-<p-1>.npy"
                    ]
                },
                "feat1-name" : {
                    "format" : {"name": "numpy"}, 
                    "data" : [ #list 
                        "<path>/feat-0.npy",
                        "<path>/feat-1.npy",
                        ....
                        "<path>/feat-<p-1>.npy"
                    ]
                }
            }
       }

    As shown above, the value for the key "edge_data" is a dictionary object, which is 
    used to describe the feature data for each of the edge-type names. Keys in this top-level
    dictionary are edge-type names and value is a dictionary which captures all the features
    for the current edge-type. Feature data is captured with keys being the feature-names and
    value is a dictionary object which has 2 keys namely `format` and `data`. Format entry is used
    to mention the format of the storage used by the node features themselves and "data" is used
    to mention all the files present for this given node feature.

    Data read from each of the node features file is a multi-dimensional tensor data and is read
    in numpy format, which is also the storage format of node features on the permanent storage.
    '''
    edge_features = {}
    edge_feature_tids = {}

375
376
377
378
    # Read edges for each edge type that are processed by the currnet process.
    edge_tids, _ = get_idranges(schema_map[constants.STR_EDGE_TYPE], 
                                    schema_map[constants.STR_NUM_EDGES_PER_CHUNK], num_parts)

379
380
381
382
383
384
385
    # Iterate over the "edge_data" dictionary in the schema_map.
    # Read the edge features if exists.
    # Also keep track of the type_eids for which the edge_features are read.
    dataset_features = schema_map[constants.STR_EDGE_DATA]
    if dataset_features and (len(dataset_features) > 0):
        for etype_name, etype_feature_data in dataset_features.items():
            for feat_name, feat_data in etype_feature_data.items():
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
                assert (feat_data[constants.STR_FORMAT][constants.STR_NAME]
                    in [constants.STR_NUMPY, constants.STR_PARQUET])

                edge_data = []
                num_files = len(feat_data[constants.STR_DATA])
                if num_files == 0:
                    continue
                reader_fmt_meta = {
                    "name": feat_data[constants.STR_FORMAT][constants.STR_NAME]
                }
                read_list = generate_read_list(num_files, world_size)
                for idx in read_list[rank]:
                    data_file = feat_data[constants.STR_DATA][idx]
                    if not os.path.isabs(data_file):
                        data_file = os.path.join(input_dir, data_file)
                    edge_data.append(
                        array_readwriter.get_array_parser(
                            **reader_fmt_meta
                        ).read(data_file)
                    )
                if len(edge_data) > 0:
                    edge_data = np.concatenate(edge_data)
                else:
                    edge_data = np.array([])
                edge_data = torch.from_numpy(edge_data)

                # scatter and gather data.
                edge_data = _shuffle_data(
                    edge_data,
                    rank,
                    world_size,
                    edge_tids[etype_name],
                    num_parts)

                # collect data on current rank.
                offset = 0
422
423
424
425
                for local_part_id in range(num_parts):
                    if map_partid_rank(local_part_id, world_size) == rank:
                        efeats = []
                        efeat_tids = []
426
427
                        start, end = edge_tids[etype_name][local_part_id]
                        efeats = edge_data[offset : offset + end - start]
428
                        efeat_tids.append(edge_tids[etype_name][local_part_id])
429
430
431
432
                        data_key = f"{etype_name}/{feat_name}/{local_part_id//world_size}"
                        edge_features[data_key] = efeats
                        edge_feature_tids[data_key] = efeat_tids
                        offset += end - start
433
434
435
436
437

    # Done with building node_features locally. 
    if len(edge_features) <= 0:
        logging.info(f'[Rank: {rank}] This dataset does not have any edge features')
    else:
438
        assert len(edge_features) == len(edge_feature_tids)
439

440
441
442
443
444
        for k, v in edge_features.items():
            logging.info(f'[Rank: {rank}] edge feature name: {k}, feature data shape: {v.shape}')
            tids = edge_feature_tids[k]
            count = tids[0][1] - tids[0][0]
            assert count == v.size()[0]
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    '''
    Code below is used to read edges from the input dataset with the help of the metadata json file
    for the input graph dataset. 
    In the metadata json file, we expect the following key-value pairs to help read the edges of the 
    input graph. 

    "edge_type" : [ # a total of n edge types
        canonical_etype_0, 
        canonical_etype_1, 
        ..., 
        canonical_etype_n-1
    ]

    The value for the key is a list of strings, each string is associated with an edgetype in the input graph.
    Note that these strings are in canonical edgetypes format. This means, these edge type strings follow the
    following naming convention: src_ntype:etype:dst_ntype. src_ntype and dst_ntype are node type names of the 
    src and dst end points of this edge type, and etype is the relation name between src and dst ntypes. 

    The files in which edges are present and their storage format are present in the following key-value pair: 
    
    "edges" : {
        "canonical_etype_0" : {
            "format" : { "name" : "csv", "delimiter" : " " }, 
            "data" : [
                filename_0, 
                filename_1, 
                filename_2, 
                ....
                filename_<p-1>
            ]
        },
    }

    As shown above the "edges" dictionary value has canonical edgetypes as keys and for each canonical edgetype
    we have "format" and "data" which describe the storage format of the edge files and actual filenames respectively. 
    Please note that each edgetype data is split in to `p` files, where p is the no. of partitions to be made of
    the input graph.

    Each edge file contains two columns representing the source per-type node_ids and destination per-type node_ids
    of any given edge. Since these are node-ids as well they are read in as int64's.
    '''
487

488
    #read my edges for each edge type
489
490
    etype_names = schema_map[constants.STR_EDGE_TYPE]
    etype_name_idmap = {e : idx for idx, e in enumerate(etype_names)}
491
492
    edge_tids, _ = get_idranges(schema_map[constants.STR_EDGE_TYPE],
                    schema_map[constants.STR_NUM_EDGES_PER_CHUNK],
493
                    num_chunks=num_parts)
494

495
    edge_datadict = {}
496
497
498
499
500
501
502
    edge_data = schema_map[constants.STR_EDGES]

    #read the edges files and store this data in memory.
    for col in [constants.GLOBAL_SRC_ID, constants.GLOBAL_DST_ID, \
            constants.GLOBAL_TYPE_EID, constants.ETYPE_ID]:
        edge_datadict[col] = []

503
    for etype_name, etype_info in edge_data.items():
504
        assert etype_info[constants.STR_FORMAT][constants.STR_NAME] == constants.STR_CSV
505

506
        edge_info = etype_info[constants.STR_DATA]
507

508
509
510
511
512
513
514
        #edgetype strings are in canonical format, src_node_type:edge_type:dst_node_type
        tokens = etype_name.split(":")
        assert len(tokens) == 3

        src_ntype_name = tokens[0]
        dst_ntype_name = tokens[2]

515
        num_chunks = len(edge_info)
516
        read_list = generate_read_list(num_chunks, num_parts)
517
518
        src_ids = []
        dst_ids = []
519
520
521
522
523
524
525

        curr_partids = []
        for part_id in range(num_parts):
            if map_partid_rank(part_id, world_size) == rank:
                curr_partids.append(read_list[part_id])

        for idx in np.concatenate(curr_partids):
526
527
528
529
            edge_file = edge_info[idx]
            if not os.path.isabs(edge_file):
                edge_file = os.path.join(input_dir, edge_file)
            logging.info(f'Loading edges of etype[{etype_name}] from {edge_file}')
530
531
532
533
534
535
536
537
538
539
540
541

            read_options=pyarrow.csv.ReadOptions(use_threads=True, block_size=4096, autogenerate_column_names=True)
            parse_options=pyarrow.csv.ParseOptions(delimiter=' ')
            with pyarrow.csv.open_csv(edge_file, read_options=read_options, parse_options=parse_options) as reader:
                for next_chunk in reader:
                    if next_chunk is None:
                        break

                    next_table = pyarrow.Table.from_batches([next_chunk])
                    src_ids.append(next_table['f0'].to_numpy())
                    dst_ids.append(next_table['f1'].to_numpy())

542
543
544
        src_ids = np.concatenate(src_ids)
        dst_ids = np.concatenate(dst_ids)

545
        #currently these are just type_edge_ids... which will be converted to global ids
546
547
        edge_datadict[constants.GLOBAL_SRC_ID].append(src_ids + ntype_gnid_offset[src_ntype_name][0, 0])
        edge_datadict[constants.GLOBAL_DST_ID].append(dst_ids + ntype_gnid_offset[dst_ntype_name][0, 0])
548
        edge_datadict[constants.ETYPE_ID].append(etype_name_idmap[etype_name] * \
549
550
551
552
553
554
            np.ones(shape=(src_ids.shape), dtype=np.int64))

        for local_part_id in range(num_parts):
            if (map_partid_rank(local_part_id, world_size) == rank):
                edge_datadict[constants.GLOBAL_TYPE_EID].append(np.arange(edge_tids[etype_name][local_part_id][0],\
                    edge_tids[etype_name][local_part_id][1] ,dtype=np.int64))
555
556
557
558
559
560
561
562

    #stitch together to create the final data on the local machine
    for col in [constants.GLOBAL_SRC_ID, constants.GLOBAL_DST_ID, constants.GLOBAL_TYPE_EID, constants.ETYPE_ID]:
        edge_datadict[col] = np.concatenate(edge_datadict[col])

    assert edge_datadict[constants.GLOBAL_SRC_ID].shape == edge_datadict[constants.GLOBAL_DST_ID].shape
    assert edge_datadict[constants.GLOBAL_DST_ID].shape == edge_datadict[constants.GLOBAL_TYPE_EID].shape
    assert edge_datadict[constants.GLOBAL_TYPE_EID].shape == edge_datadict[constants.ETYPE_ID].shape
563
    logging.info(f'[Rank: {rank}] Done reading edge_file: {len(edge_datadict)}, {edge_datadict[constants.GLOBAL_SRC_ID].shape}')
564
    logging.info(f'Rank: {rank} edge_feat_tids: {edge_feature_tids}')
565

566
    return node_tids, node_features, node_feature_tids, edge_datadict, edge_tids, edge_features, edge_feature_tids
567