metric.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import dgl
import mxnet as mx
import numpy as np
import logging, time
from operator import attrgetter, itemgetter
from mxnet import nd, gluon
from mxnet.gluon import nn
from dgl.utils import toindex
from dgl.nn.mxnet import GraphConv
from gluoncv.model_zoo import get_model
from gluoncv.data.batchify import Pad

def iou(boxA, boxB):
    # determine the (x, y)-coordinates of the intersection rectangle
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])
 
    interArea = max(0, xB - xA) * max(0, yB - yA)
    if interArea < 1e-7 :
        return 0

    boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
    boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
    if boxAArea + boxBArea - interArea < 1e-7:
        return 0

    iou_val = interArea / float(boxAArea + boxBArea - interArea)
    return iou_val

def object_iou_thresh(gt_object, pred_object, iou_thresh=0.5):
    obj_iou = iou(gt_object[1:5], pred_object[1:5])
    if obj_iou >= iou_thresh:
        return True
    return False

def triplet_iou_thresh(pred_triplet, gt_triplet, iou_thresh=0.5):
    sub_iou = iou(gt_triplet[5:9], pred_triplet[5:9])
    if sub_iou >= iou_thresh:
        ob_iou = iou(gt_triplet[9:13], pred_triplet[9:13])
        if ob_iou >= iou_thresh:
            return True
    return False

@mx.metric.register
@mx.metric.alias('auc')
class AUCMetric(mx.metric.EvalMetric):
    def __init__(self, name='auc', eps=1e-12):
        super(AUCMetric, self).__init__(name)
        self.eps = eps

    def update(self, labels, preds):
        mx.metric.check_label_shapes(labels, preds)
        label_weight = labels[0].asnumpy()
        preds = preds[0].asnumpy()
        tmp = []
        for i in range(preds.shape[0]):
            tmp.append((label_weight[i], preds[i][1]))
        tmp = sorted(tmp, key=itemgetter(1), reverse=True)
        label_sum = label_weight.sum()
        if label_sum == 0 or label_sum == label_weight.size:
            return

        label_one_num = np.count_nonzero(label_weight)
        label_zero_num = len(label_weight) - label_one_num
        total_area = label_zero_num * label_one_num
        height = 0
        width = 0
        area = 0
        for a, _ in tmp:
            if a == 1.0:
                height += 1.0
            else:
                width += 1.0
                area += height

        self.sum_metric += area / total_area
        self.num_inst += 1

@mx.metric.register
@mx.metric.alias('predcls')
class PredCls(mx.metric.EvalMetric):
    '''Metric with ground truth object location and label'''
    def __init__(self, topk=20, iou_thresh=0.99):
        super(PredCls, self).__init__('predcls@%d'%(topk))
        self.topk = topk
        self.iou_thresh = iou_thresh

    def update(self, labels, preds):
        if labels is None or preds is None:
            self.num_inst += 1
            return
        preds = preds[preds[:,0].argsort()[::-1]]
        m = min(self.topk, preds.shape[0])
        count = 0
        gt_edge_num = labels.shape[0]
        label_matched = [False for label in labels]
        for i in range(m):
            pred = preds[i]
            for j in range(gt_edge_num):
                if label_matched[j]:
                    continue
                label = labels[j]
                if int(label[2]) == int(pred[2]) and \
                   triplet_iou_thresh(pred, label, self.iou_thresh):
                    count += 1
                    label_matched[j] = True

        total = labels.shape[0]
        self.sum_metric += count / total
        self.num_inst += 1

@mx.metric.register
@mx.metric.alias('phrcls')
class PhrCls(mx.metric.EvalMetric):
    '''Metric with ground truth object location and predicted object label from detector'''
    def __init__(self, topk=20, iou_thresh=0.99):
        super(PhrCls, self).__init__('phrcls@%d'%(topk))
        self.topk = topk
        self.iou_thresh = iou_thresh

    def update(self, labels, preds):
        if labels is None or preds is None:
            self.num_inst += 1
            return
        preds = preds[preds[:,1].argsort()[::-1]]
        m = min(self.topk, preds.shape[0])
        count = 0
        gt_edge_num = labels.shape[0]
        label_matched = [False for label in labels]
        for i in range(m):
            pred = preds[i]
            for j in range(gt_edge_num):
                if label_matched[j]:
                    continue
                label = labels[j]
                if int(label[2]) == int(pred[2]) and \
                   int(label[3]) == int(pred[3]) and \
                   int(label[4]) == int(pred[4]) and \
                   triplet_iou_thresh(pred, label, self.iou_thresh):
                    count += 1
                    label_matched[j] = True
        total = labels.shape[0]
        self.sum_metric += count / total
        self.num_inst += 1

@mx.metric.register
@mx.metric.alias('sgdet')
class SGDet(mx.metric.EvalMetric):
    '''Metric with predicted object information by the detector'''
    def __init__(self, topk=20, iou_thresh=0.5):
        super(SGDet, self).__init__('sgdet@%d'%(topk))
        self.topk = topk
        self.iou_thresh = iou_thresh

    def update(self, labels, preds):
        if labels is None or preds is None:
            self.num_inst += 1
            return
        preds = preds[preds[:,1].argsort()[::-1]]
        m = min(self.topk, len(preds))
        count = 0
        gt_edge_num = labels.shape[0]
        label_matched = [False for label in labels]
        for i in range(m):
            pred = preds[i]
            for j in range(gt_edge_num):
                if label_matched[j]:
                    continue
                label = labels[j]
                if int(label[2]) == int(pred[2]) and \
                   int(label[3]) == int(pred[3]) and \
                   int(label[4]) == int(pred[4]) and \
                   triplet_iou_thresh(pred, label, self.iou_thresh):
                    count += 1
                    label_matched[j] =True
        total = labels.shape[0]
        self.sum_metric += count / total
        self.num_inst += 1

@mx.metric.register
@mx.metric.alias('sgdet+')
class SGDetPlus(mx.metric.EvalMetric):
    '''Metric proposed by `Graph R-CNN for Scene Graph Generation`'''
    def __init__(self, topk=20, iou_thresh=0.5):
        super(SGDetPlus, self).__init__('sgdet+@%d'%(topk))
        self.topk = topk
        self.iou_thresh = iou_thresh

    def update(self, labels, preds):
        label_objects, label_triplets = labels
        pred_objects, pred_triplets = preds
        if label_objects is None or pred_objects is None:
            self.num_inst += 1
            return
        count = 0
        # count objects
        object_matched = [False for obj in label_objects]
        m = len(pred_objects)
        gt_obj_num = label_objects.shape[0]
        for i in range(m):
            pred = pred_objects[i]
            for j in range(gt_obj_num):
                if object_matched[j]:
                    continue
                label = label_objects[j]
                if int(label[0]) == int(pred[0]) and \
                   object_iou_thresh(pred, label, self.iou_thresh):
                    count += 1
                    object_matched[j] = True
        
        # count predicate and triplet
        pred_triplets = pred_triplets[pred_triplets[:,1].argsort()[::-1]]
        m = min(self.topk, len(pred_triplets))
        gt_triplet_num = label_triplets.shape[0]
        triplet_matched = [False for label in label_triplets]
        predicate_matched = [False for label in label_triplets]
        for i in range(m):
            pred = pred_triplets[i]
            for j in range(gt_triplet_num):
                label = label_triplets[j]
                if not predicate_matched:
                    if int(label[2]) == int(pred[2]) and \
                       triplet_iou_thresh(pred, label, self.iou_thresh):
                        count += label[3]
                        predicate_matched[j] = True
                if not triplet_matched[j]:
                    if int(label[2]) == int(pred[2]) and \
                       int(label[3]) == int(pred[3]) and \
                       int(label[4]) == int(pred[4]) and \
                       triplet_iou_thresh(pred, label, self.iou_thresh):
                        count += 1
                        triplet_matched[j] = True
        # compute sum
        total = labels.shape[0]
        N = gt_obj_num + 2 * total
        self.sum_metric += count / N
        self.num_inst += 1

def extract_gt(g, img_size):
    '''extract prediction from ground truth graph'''
    if g is None or g.number_of_nodes() == 0:
        return None, None
    gt_eids = np.where(g.edata['rel_class'].asnumpy() > 0)[0]
    if len(gt_eids) == 0:
        return None, None

    gt_class = g.ndata['node_class'][:,0].asnumpy()
    gt_bbox = g.ndata['bbox'].asnumpy()
    gt_bbox[:, 0] /= img_size[1] 
    gt_bbox[:, 1] /= img_size[0] 
    gt_bbox[:, 2] /= img_size[1] 
    gt_bbox[:, 3] /= img_size[0] 

    gt_objects = np.vstack([gt_class, gt_bbox.transpose(1, 0)]).transpose(1, 0)

    gt_node_ids = g.find_edges(gt_eids)
    gt_node_sub = gt_node_ids[0].asnumpy()
    gt_node_ob = gt_node_ids[1].asnumpy()
    gt_rel_class = g.edata['rel_class'][gt_eids,0].asnumpy() - 1
    gt_sub_class = gt_class[gt_node_sub]
    gt_ob_class = gt_class[gt_node_ob]

    gt_sub_bbox = gt_bbox[gt_node_sub]
    gt_ob_bbox = gt_bbox[gt_node_ob]

    n = len(gt_eids)
    gt_triplets = np.vstack([np.ones(n), np.ones(n),
                             gt_rel_class, gt_sub_class, gt_ob_class,
                             gt_sub_bbox.transpose(1, 0),
                             gt_ob_bbox.transpose(1, 0)]).transpose(1, 0)
    return gt_objects, gt_triplets

def extract_pred(g, topk=100, joint_preds=False):
    '''extract prediction from prediction graph for validation and visualization'''
    if g is None or g.number_of_nodes() == 0:
        return None, None

    pred_class = g.ndata['node_class_pred'].asnumpy()
    pred_class_prob = g.ndata['node_class_logit'].asnumpy()
    pred_bbox = g.ndata['pred_bbox'][:,0:4].asnumpy()

    pred_objects = np.vstack([pred_class, pred_bbox.transpose(1, 0)]).transpose(1, 0)

    score_pred = g.edata['score_pred'].asnumpy()
    score_phr = g.edata['score_phr'].asnumpy()
    score_pred_topk_eids = (-score_pred).argsort()[0:topk].tolist()
    score_phr_topk_eids = (-score_phr).argsort()[0:topk].tolist()
    topk_eids = sorted(list(set(score_pred_topk_eids + score_phr_topk_eids)))

    pred_rel_prob = g.edata['preds'][topk_eids].asnumpy()
    if joint_preds:
        pred_rel_class = pred_rel_prob[:,1:].argmax(axis=1)
    else:
        pred_rel_class = pred_rel_prob.argmax(axis=1)

    pred_node_ids = g.find_edges(topk_eids)
    pred_node_sub = pred_node_ids[0].asnumpy()
    pred_node_ob = pred_node_ids[1].asnumpy()

    pred_sub_class = pred_class[pred_node_sub]
    pred_sub_class_prob = pred_class_prob[pred_node_sub]
    pred_sub_bbox = pred_bbox[pred_node_sub]

    pred_ob_class = pred_class[pred_node_ob]
    pred_ob_class_prob = pred_class_prob[pred_node_ob]
    pred_ob_bbox = pred_bbox[pred_node_ob]

    pred_triplets = np.vstack([score_pred[topk_eids], score_phr[topk_eids],
                               pred_rel_class, pred_sub_class, pred_ob_class,
                               pred_sub_bbox.transpose(1, 0),
                               pred_ob_bbox.transpose(1, 0)]).transpose(1, 0)
    return pred_objects, pred_triplets