ndarray.cc 15.8 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
/*!
 *  Copyright (c) 2017 by Contributors
 * \file ndarray.cc
 * \brief NDArray container infratructure.
 */
6
#include <string.h>
Minjie Wang's avatar
Minjie Wang committed
7
8
9
10
#include <dmlc/logging.h>
#include <dgl/runtime/ndarray.h>
#include <dgl/runtime/c_runtime_api.h>
#include <dgl/runtime/device_api.h>
11
12
#include <dgl/runtime/shared_mem.h>
#include <dgl/zerocopy_serializer.h>
Minjie Wang's avatar
Minjie Wang committed
13
14
15
16
17
#include "runtime_base.h"

// deleter for arrays used by DLPack exporter
extern "C" void NDArrayDLPackDeleter(DLManagedTensor* tensor);

18
namespace dgl {
Minjie Wang's avatar
Minjie Wang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
namespace runtime {

inline void VerifyDataType(DLDataType dtype) {
  CHECK_GE(dtype.lanes, 1);
  if (dtype.code == kDLFloat) {
    CHECK_EQ(dtype.bits % 8, 0);
  } else {
    CHECK_EQ(dtype.bits % 8, 0);
  }
  CHECK_EQ(dtype.bits & (dtype.bits - 1), 0);
}

inline size_t GetDataSize(const DLTensor& arr) {
  size_t size = 1;
33
  for (dgl_index_t i = 0; i < arr.ndim; ++i) {
Minjie Wang's avatar
Minjie Wang committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    size *= arr.shape[i];
  }
  size *= (arr.dtype.bits * arr.dtype.lanes + 7) / 8;
  return size;
}

inline size_t GetDataAlignment(const DLTensor& arr) {
  size_t align = (arr.dtype.bits / 8) * arr.dtype.lanes;
  if (align < kAllocAlignment) return kAllocAlignment;
  return align;
}

struct NDArray::Internal {
  // Default deleter for the container
  static void DefaultDeleter(NDArray::Container* ptr) {
49
    using dgl::runtime::NDArray;
Minjie Wang's avatar
Minjie Wang committed
50
51
    if (ptr->manager_ctx != nullptr) {
      static_cast<NDArray::Container*>(ptr->manager_ctx)->DecRef();
52
53
54
55
#ifndef _WIN32
    } else if (ptr->mem) {
      ptr->mem = nullptr;
#endif  // _WIN32
Minjie Wang's avatar
Minjie Wang committed
56
    } else if (ptr->dl_tensor.data != nullptr) {
57
      dgl::runtime::DeviceAPI::Get(ptr->dl_tensor.ctx)->FreeDataSpace(
Minjie Wang's avatar
Minjie Wang committed
58
59
60
61
62
63
          ptr->dl_tensor.ctx, ptr->dl_tensor.data);
    }
    delete ptr;
  }
  // Deleter for NDArray converted from DLPack
  // This is used from data which is passed from external DLPack(DLManagedTensor)
64
  // that are not allocated inside of DGL.
Minjie Wang's avatar
Minjie Wang committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  // This enables us to create NDArray from memory allocated by other
  // frameworks that are DLPack compatible
  static void DLPackDeleter(NDArray::Container* ptr) {
    DLManagedTensor* tensor = static_cast<DLManagedTensor*>(ptr->manager_ctx);
    if (tensor->deleter != nullptr) {
      (*tensor->deleter)(tensor);
    }
    delete ptr;
  }
  // Local create function which allocates tensor metadata
  // but does not allocate space for the data.
  static NDArray Create(std::vector<int64_t> shape,
                        DLDataType dtype,
                        DLContext ctx) {
    VerifyDataType(dtype);
    // critical zone
    NDArray::Container* data = new NDArray::Container();
    data->deleter = DefaultDeleter;
    NDArray ret(data);
    ret.data_ = data;
    // RAII now in effect
    // setup shape
    data->shape_ = std::move(shape);
    data->dl_tensor.shape = dmlc::BeginPtr(data->shape_);
    data->dl_tensor.ndim = static_cast<int>(data->shape_.size());
90
91
92
93
94
95
96
    // setup stride (this should be optional, but some framework
    //   does not support NULL stride and thus will crash the program).
    data->stride_.resize(data->dl_tensor.ndim, 1);
    for (int i = data->dl_tensor.ndim - 2; i >= 0; --i) {
      data->stride_[i] = data->shape_[i+1] * data->stride_[i+1];
    }
    data->dl_tensor.strides = dmlc::BeginPtr(data->stride_);
Minjie Wang's avatar
Minjie Wang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    // setup dtype
    data->dl_tensor.dtype = dtype;
    // setup ctx
    data->dl_tensor.ctx = ctx;
    return ret;
  }
  // Implementation of API function
  static DLTensor* MoveAsDLTensor(NDArray arr) {
    DLTensor* tensor = const_cast<DLTensor*>(arr.operator->());
    CHECK(reinterpret_cast<DLTensor*>(arr.data_) == tensor);
    arr.data_ = nullptr;
    return tensor;
  }
  // Container to DLManagedTensor
  static DLManagedTensor* ToDLPack(NDArray::Container* from) {
    CHECK(from != nullptr);
    DLManagedTensor* ret = new DLManagedTensor();
    ret->dl_tensor = from->dl_tensor;
    ret->manager_ctx = from;
    from->IncRef();
    ret->deleter = NDArrayDLPackDeleter;
    return ret;
  }
};

122
123
124
125
size_t NDArray::GetSize() const {
  return GetDataSize(data_->dl_tensor);
}

126
int64_t NDArray::NumElements() const {
127
128
  if (data_->dl_tensor.ndim == 0)
    return 0;
129
130
131
132
133
134
135
  int64_t size = 1;
  for (int i = 0; i < data_->dl_tensor.ndim; ++i) {
    size *= data_->dl_tensor.shape[i];
  }
  return size;
}

136
137
138
139
bool NDArray::IsContiguous() const {
  CHECK(data_ != nullptr);
  if (data_->dl_tensor.strides == nullptr)
    return true;
140
141
142
143
144
145
146
147
148
149

  // See https://github.com/dmlc/dgl/issues/2118 and PyTorch's compute_contiguous() implementation
  int64_t z = 1;
  for (int64_t i = data_->dl_tensor.ndim - 1; i >= 0; --i) {
    if (data_->dl_tensor.shape[i] != 1) {
      if (data_->dl_tensor.strides[i] == z)
        z *= data_->dl_tensor.shape[i];
      else
        return false;
    }
150
  }
151
  return true;
152
153
}

Minjie Wang's avatar
Minjie Wang committed
154
NDArray NDArray::CreateView(std::vector<int64_t> shape,
155
156
                            DLDataType dtype,
                            int64_t offset) {
Minjie Wang's avatar
Minjie Wang committed
157
  CHECK(data_ != nullptr);
158
  CHECK(IsContiguous()) << "Can only create view for compact tensor";
Minjie Wang's avatar
Minjie Wang committed
159
160
161
162
163
164
165
166
167
168
  NDArray ret = Internal::Create(shape, dtype, data_->dl_tensor.ctx);
  ret.data_->dl_tensor.byte_offset =
      this->data_->dl_tensor.byte_offset;
  size_t curr_size = GetDataSize(this->data_->dl_tensor);
  size_t view_size = GetDataSize(ret.data_->dl_tensor);
  CHECK_LE(view_size, curr_size)
      << "Tries to create a view that has bigger memory than current one";
  // increase ref count
  this->data_->IncRef();
  ret.data_->manager_ctx = this->data_;
169
170
  ret.data_->dl_tensor.data =
    static_cast<char*>(this->data_->dl_tensor.data) + offset;
Minjie Wang's avatar
Minjie Wang committed
171
172
173
174
175
176
177
  return ret;
}

DLManagedTensor* NDArray::ToDLPack() const {
  return Internal::ToDLPack(data_);
}

178
179
180
181
182
183
184
185
186
187
NDArray NDArray::EmptyShared(const std::string &name,
                       std::vector<int64_t> shape,
                       DLDataType dtype,
                       DLContext ctx, bool is_create) {
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
#ifndef _WIN32
  auto mem = std::make_shared<SharedMemory>(name);
  if (is_create) {
188
    ret.data_->dl_tensor.data = mem->CreateNew(size);
189
  } else {
190
    ret.data_->dl_tensor.data = mem->Open(size);
191
192
193
194
195
196
197
198
199
  }

  ret.data_->mem = mem;
#else
  LOG(FATAL) << "Windows doesn't support NDArray with shared memory";
#endif  // _WIN32
  return ret;
}

Minjie Wang's avatar
Minjie Wang committed
200
NDArray NDArray::Empty(std::vector<int64_t> shape,
201
202
                       DLDataType dtype,
                       DLContext ctx) {
Minjie Wang's avatar
Minjie Wang committed
203
204
205
206
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
207
208
209
210
  if (size > 0)
    ret.data_->dl_tensor.data =
        DeviceAPI::Get(ret->ctx)->AllocDataSpace(
            ret->ctx, size, alignment, ret->dtype);
Minjie Wang's avatar
Minjie Wang committed
211
212
213
214
215
216
217
218
219
220
221
222
223
  return ret;
}

NDArray NDArray::FromDLPack(DLManagedTensor* tensor) {
  NDArray::Container* data = new NDArray::Container();
  data->deleter = Internal::DLPackDeleter;
  data->manager_ctx = tensor;
  data->dl_tensor = tensor->dl_tensor;
  return NDArray(data);
}

void NDArray::CopyFromTo(DLTensor* from,
                         DLTensor* to,
224
                         DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
225
226
227
  size_t from_size = GetDataSize(*from);
  size_t to_size = GetDataSize(*to);
  CHECK_EQ(from_size, to_size)
228
    << "DGLArrayCopyFromTo: The size must exactly match";
Minjie Wang's avatar
Minjie Wang committed
229
230
231
232
233
234
235
236

  CHECK(from->ctx.device_type == to->ctx.device_type
        || from->ctx.device_type == kDLCPU
        || to->ctx.device_type == kDLCPU)
    << "Can not copy across different ctx types directly";

  // Use the context that is *not* a cpu context to get the correct device
  // api manager.
237
  DGLContext ctx = from->ctx.device_type != kDLCPU ? from->ctx : to->ctx;
Minjie Wang's avatar
Minjie Wang committed
238
239
240
241
242
243
244

  DeviceAPI::Get(ctx)->CopyDataFromTo(
    from->data, static_cast<size_t>(from->byte_offset),
    to->data, static_cast<size_t>(to->byte_offset),
    from_size, from->ctx, to->ctx, from->dtype, stream);
}

245
template<typename T>
246
247
NDArray NDArray::FromVector(const std::vector<T>& vec, DLContext ctx) {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
  int64_t size = static_cast<int64_t>(vec.size());
  NDArray ret = NDArray::Empty({size}, dtype, DLContext{kDLCPU, 0});
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      vec.data(),
      0,
      static_cast<T*>(ret->data),
      0,
      size * sizeof(T),
      DLContext{kDLCPU, 0},
      ctx,
      dtype,
      nullptr);
  return ret;
}

// export specializations
264
265
266
267
268
269
template NDArray NDArray::FromVector<int32_t>(const std::vector<int32_t>&, DLContext);
template NDArray NDArray::FromVector<int64_t>(const std::vector<int64_t>&, DLContext);
template NDArray NDArray::FromVector<uint32_t>(const std::vector<uint32_t>&, DLContext);
template NDArray NDArray::FromVector<uint64_t>(const std::vector<uint64_t>&, DLContext);
template NDArray NDArray::FromVector<float>(const std::vector<float>&, DLContext);
template NDArray NDArray::FromVector<double>(const std::vector<double>&, DLContext);
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
template<typename T>
std::vector<T> NDArray::ToVector() const {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
  CHECK(data_->dl_tensor.ndim == 1) << "ToVector() only supported for 1D arrays";
  CHECK(data_->dl_tensor.dtype == dtype) << "dtype mismatch";

  int64_t size = data_->dl_tensor.shape[0];
  std::vector<T> vec(size);
  const DLContext &ctx = data_->dl_tensor.ctx;
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      static_cast<T*>(data_->dl_tensor.data),
      0,
      vec.data(),
      0,
      size * sizeof(T),
      ctx,
      DLContext{kDLCPU, 0},
      dtype,
      nullptr);
  return vec;
}

template std::vector<int32_t> NDArray::ToVector<int32_t>() const;
template std::vector<int64_t> NDArray::ToVector<int64_t>() const;
template std::vector<uint32_t> NDArray::ToVector<uint32_t>() const;
template std::vector<uint64_t> NDArray::ToVector<uint64_t>() const;
template std::vector<float> NDArray::ToVector<float>() const;
template std::vector<double> NDArray::ToVector<double>() const;
299

300
301
302
303
304
305
306
307
#ifndef _WIN32
std::shared_ptr<SharedMemory> NDArray::GetSharedMem() const {
  return this->data_->mem;
}
#endif  // _WIN32


void NDArray::Save(dmlc::Stream* strm) const {
308
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
309
310
311
312
313
314
315
316
  if (zc_strm) {
    zc_strm->PushNDArray(*this);
    return;
  }
  SaveDLTensor(strm, const_cast<DLTensor*>(operator->()));
}

bool NDArray::Load(dmlc::Stream* strm) {
317
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
  if (zc_strm) {
    *this = zc_strm->PopNDArray();
    return true;
  }
  uint64_t header, reserved;
  CHECK(strm->Read(&header))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&reserved))
      << "Invalid DLTensor file format";
  CHECK(header == kDGLNDArrayMagic)
      << "Invalid DLTensor file format";
  DLContext ctx;
  int ndim;
  DLDataType dtype;
  CHECK(strm->Read(&ctx))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&ndim))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&dtype))
      << "Invalid DLTensor file format";
  CHECK_EQ(ctx.device_type, kDLCPU)
      << "Invalid DLTensor context: can only save as CPU tensor";
  std::vector<int64_t> shape(ndim);
  if (ndim != 0) {
    CHECK(strm->ReadArray(&shape[0], ndim))
        << "Invalid DLTensor file format";
  }
  NDArray ret = NDArray::Empty(shape, dtype, ctx);
  int64_t num_elems = 1;
  int elem_bytes = (ret->dtype.bits + 7) / 8;
  for (int i = 0; i < ret->ndim; ++i) {
    num_elems *= ret->shape[i];
  }
  int64_t data_byte_size;
  CHECK(strm->Read(&data_byte_size))
      << "Invalid DLTensor file format";
  CHECK(data_byte_size == num_elems * elem_bytes)
      << "Invalid DLTensor file format";
  if (data_byte_size != 0)  {
    // strm->Read will return the total number of elements successfully read.
    // Therefore if data_byte_size is zero, the CHECK below would fail.
    CHECK(strm->Read(ret->data, data_byte_size))
        << "Invalid DLTensor file format";
  }
  if (!DMLC_IO_NO_ENDIAN_SWAP) {
    dmlc::ByteSwap(ret->data, elem_bytes, num_elems);
  }
  *this = ret;
  return true;
}


Minjie Wang's avatar
Minjie Wang committed
370
}  // namespace runtime
371
}  // namespace dgl
Minjie Wang's avatar
Minjie Wang committed
372

373
using namespace dgl::runtime;
Minjie Wang's avatar
Minjie Wang committed
374
375
376
377
378
379

void NDArrayDLPackDeleter(DLManagedTensor* tensor) {
  static_cast<NDArray::Container*>(tensor->manager_ctx)->DecRef();
  delete tensor;
}

380
int DGLArrayAlloc(const dgl_index_t* shape,
Minjie Wang's avatar
Minjie Wang committed
381
382
383
384
385
386
                  int ndim,
                  int dtype_code,
                  int dtype_bits,
                  int dtype_lanes,
                  int device_type,
                  int device_id,
387
                  DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
388
389
390
391
392
393
394
395
396
397
398
399
400
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  DLContext ctx;
  ctx.device_type = static_cast<DLDeviceType>(device_type);
  ctx.device_id = device_id;
  *out = NDArray::Internal::MoveAsDLTensor(
      NDArray::Empty(std::vector<int64_t>(shape, shape + ndim), dtype, ctx));
  API_END();
}

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
int DGLArrayAllocSharedMem(const char *mem_name,
                           const dgl_index_t *shape,
                           int ndim,
                           int dtype_code,
                           int dtype_bits,
                           int dtype_lanes,
                           bool is_create,
                           DGLArrayHandle* out) {
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  std::vector<int64_t> shape_vec(shape, shape + ndim);
  NDArray arr = NDArray::EmptyShared(mem_name, shape_vec, dtype,
                                     DLContext{kDLCPU, 0}, is_create);
  *out = NDArray::Internal::MoveAsDLTensor(arr);
  API_END();
}

421
int DGLArrayFree(DGLArrayHandle handle) {
Minjie Wang's avatar
Minjie Wang committed
422
423
424
425
426
  API_BEGIN();
  reinterpret_cast<NDArray::Container*>(handle)->DecRef();
  API_END();
}

427
428
429
int DGLArrayCopyFromTo(DGLArrayHandle from,
                       DGLArrayHandle to,
                       DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
430
431
432
433
434
  API_BEGIN();
  NDArray::CopyFromTo(from, to, stream);
  API_END();
}

435
436
int DGLArrayFromDLPack(DLManagedTensor* from,
                       DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
437
438
439
440
441
  API_BEGIN();
  *out = NDArray::Internal::MoveAsDLTensor(NDArray::FromDLPack(from));
  API_END();
}

442
443
444
445
446
447
448
inline bool is_aligned(const void* ptr, std::uintptr_t alignment) noexcept {
  auto iptr = reinterpret_cast<std::uintptr_t>(ptr);
  return !(iptr % alignment);
}

int DGLArrayToDLPack(DGLArrayHandle from, DLManagedTensor** out,
                     int alignment) {
Minjie Wang's avatar
Minjie Wang committed
449
  API_BEGIN();
450
451
452
453
454
455
456
457
458
459
  auto* nd_container = reinterpret_cast<NDArray::Container*>(from);
  DLTensor* nd = &(nd_container->dl_tensor);
  if (alignment != 0 && !is_aligned(nd->data, alignment)) {
    std::vector<int64_t> shape_vec(nd->shape, nd->shape + nd->ndim);
    NDArray copy_ndarray = NDArray::Empty(shape_vec, nd->dtype, nd->ctx);
    copy_ndarray.CopyFrom(nd);
    *out = copy_ndarray.ToDLPack();
  } else {
    *out = NDArray::Internal::ToDLPack(nd_container);
  }
Minjie Wang's avatar
Minjie Wang committed
460
461
462
  API_END();
}

463
void DGLDLManagedTensorCallDeleter(DLManagedTensor* dltensor) {
Minjie Wang's avatar
Minjie Wang committed
464
465
466
  (*(dltensor->deleter))(dltensor);
}

467
int DGLArrayCopyFromBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
468
469
470
                          void* data,
                          size_t nbytes) {
  API_BEGIN();
471
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
472
473
474
475
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
476
      << "DGLArrayCopyFromBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
477
478
479
480
481
482
483
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      data, 0,
      handle->data, static_cast<size_t>(handle->byte_offset),
      nbytes, cpu_ctx, handle->ctx, handle->dtype, nullptr);
  API_END();
}

484
int DGLArrayCopyToBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
485
486
487
                        void* data,
                        size_t nbytes) {
  API_BEGIN();
488
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
489
490
491
492
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
493
      << "DGLArrayCopyToBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
494
495
496
497
498
499
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      handle->data, static_cast<size_t>(handle->byte_offset),
      data, 0,
      nbytes, handle->ctx, cpu_ctx, handle->dtype, nullptr);
  API_END();
}