array.cc 31.9 KB
Newer Older
1
2
3
4
5
6
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/array.cc
 * \brief DGL array utilities implementation
 */
#include <dgl/array.h>
7
#include <dgl/graph_traversal.h>
8
9
#include <dgl/packed_func_ext.h>
#include <dgl/runtime/container.h>
10
#include <dgl/runtime/shared_mem.h>
11
12
#include <dgl/runtime/device_api.h>
#include <sstream>
13
14
15
16
#include "../c_api_common.h"
#include "./array_op.h"
#include "./arith.h"

17
using namespace dgl::runtime;
18

19
namespace dgl {
20
21
22
23
24
25
26
27
28
29
30
31
32
33
namespace aten {

IdArray NewIdArray(int64_t length, DLContext ctx, uint8_t nbits) {
  return IdArray::Empty({length}, DLDataType{kDLInt, nbits, 1}, ctx);
}

IdArray Clone(IdArray arr) {
  IdArray ret = NewIdArray(arr->shape[0], arr->ctx, arr->dtype.bits);
  ret.CopyFrom(arr);
  return ret;
}

IdArray Range(int64_t low, int64_t high, uint8_t nbits, DLContext ctx) {
  IdArray ret;
34
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Range", {
35
36
37
38
39
40
41
42
43
44
45
46
47
    if (nbits == 32) {
      ret = impl::Range<XPU, int32_t>(low, high, ctx);
    } else if (nbits == 64) {
      ret = impl::Range<XPU, int64_t>(low, high, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

IdArray Full(int64_t val, int64_t length, uint8_t nbits, DLContext ctx) {
  IdArray ret;
48
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
49
50
51
52
53
54
55
56
57
58
59
60
    if (nbits == 32) {
      ret = impl::Full<XPU, int32_t>(val, length, ctx);
    } else if (nbits == 64) {
      ret = impl::Full<XPU, int64_t>(val, length, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

IdArray AsNumBits(IdArray arr, uint8_t bits) {
61
62
63
64
65
  CHECK(bits == 32 || bits == 64)
    << "Invalid ID type. Must be int32 or int64, but got int"
    << static_cast<int>(bits) << ".";
  if (arr->dtype.bits == bits)
    return arr;
66
67
  if (arr.NumElements() == 0)
    return NewIdArray(arr->shape[0], arr->ctx, bits);
68
  IdArray ret;
69
  ATEN_XPU_SWITCH_CUDA(arr->ctx.device_type, XPU, "AsNumBits", {
70
71
72
73
74
75
76
77
78
    ATEN_ID_TYPE_SWITCH(arr->dtype, IdType, {
      ret = impl::AsNumBits<XPU, IdType>(arr, bits);
    });
  });
  return ret;
}

IdArray HStack(IdArray lhs, IdArray rhs) {
  IdArray ret;
79
80
  CHECK_SAME_CONTEXT(lhs, rhs);
  CHECK_SAME_DTYPE(lhs, rhs);
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  CHECK_EQ(lhs->shape[0], rhs->shape[0]);
  auto device = runtime::DeviceAPI::Get(lhs->ctx);
  const auto& ctx = lhs->ctx;
  ATEN_ID_TYPE_SWITCH(lhs->dtype, IdType, {
    const int64_t len = lhs->shape[0];
    ret = NewIdArray(2 * len, lhs->ctx, lhs->dtype.bits);
    device->CopyDataFromTo(lhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), 0,
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
    device->CopyDataFromTo(rhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), len * sizeof(IdType),
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
Jinjing Zhou's avatar
Jinjing Zhou committed
95
96
97
98
  });
  return ret;
}

99
100
NDArray IndexSelect(NDArray array, IdArray index) {
  NDArray ret;
101
  CHECK_SAME_CONTEXT(array, index);
102
103
104
  CHECK_GE(array->ndim, 1) << "Only support array with at least 1 dimension";
  CHECK_EQ(array->shape[0], array.NumElements()) << "Only support tensor"
    << " whose first dimension equals number of elements, e.g. (5,), (5, 1)";
105
106
  CHECK_EQ(index->ndim, 1) << "Index array must be an 1D array.";
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
107
108
109
110
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        ret = impl::IndexSelect<XPU, DType, IdType>(array, index);
      });
111
112
113
114
115
    });
  });
  return ret;
}

116
template<typename ValueType>
117
ValueType IndexSelect(NDArray array, int64_t index) {
118
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
119
120
  CHECK(index >= 0 && index < array.NumElements())
    << "Index " << index << " is out of bound.";
121
  ValueType ret = 0;
122
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
123
124
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ret = impl::IndexSelect<XPU, DType>(array, index);
125
126
127
128
    });
  });
  return ret;
}
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
template int32_t IndexSelect<int32_t>(NDArray array, int64_t index);
template int64_t IndexSelect<int64_t>(NDArray array, int64_t index);
template uint32_t IndexSelect<uint32_t>(NDArray array, int64_t index);
template uint64_t IndexSelect<uint64_t>(NDArray array, int64_t index);
template float IndexSelect<float>(NDArray array, int64_t index);
template double IndexSelect<double>(NDArray array, int64_t index);

NDArray IndexSelect(NDArray array, int64_t start, int64_t end) {
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
  CHECK(start >= 0 && start < array.NumElements())
    << "Index " << start << " is out of bound.";
  CHECK(end >= 0 && end <= array.NumElements())
    << "Index " << end << " is out of bound.";
  CHECK_LE(start, end);
  auto device = runtime::DeviceAPI::Get(array->ctx);
  const int64_t len = end - start;
  NDArray ret = NDArray::Empty({len}, array->dtype, array->ctx);
  ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
    device->CopyDataFromTo(array->data, start * sizeof(DType),
                           ret->data, 0, len * sizeof(DType),
                           array->ctx, ret->ctx, array->dtype, nullptr);
  });
  return ret;
}
153

154
155
NDArray Scatter(NDArray array, IdArray indices) {
  NDArray ret;
156
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Scatter", {
157
158
159
160
161
162
163
164
165
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(indices->dtype, IdType, {
        ret = impl::Scatter<XPU, DType, IdType>(array, indices);
      });
    });
  });
  return ret;
}

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
void Scatter_(IdArray index, NDArray value, NDArray out) {
  CHECK_SAME_DTYPE(value, out);
  CHECK_SAME_CONTEXT(index, value);
  CHECK_SAME_CONTEXT(index, out);
  CHECK_EQ(value->shape[0], index->shape[0]);
  if (index->shape[0] == 0)
    return;
  ATEN_XPU_SWITCH_CUDA(value->ctx.device_type, XPU, "Scatter_", {
    ATEN_DTYPE_SWITCH(value->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        impl::Scatter_<XPU, DType, IdType>(index, value, out);
      });
    });
  });
}

182
183
NDArray Repeat(NDArray array, IdArray repeats) {
  NDArray ret;
184
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Repeat", {
185
186
187
188
189
190
191
192
193
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(repeats->dtype, IdType, {
        ret = impl::Repeat<XPU, DType, IdType>(array, repeats);
      });
    });
  });
  return ret;
}

194
195
IdArray Relabel_(const std::vector<IdArray>& arrays) {
  IdArray ret;
196
  ATEN_XPU_SWITCH(arrays[0]->ctx.device_type, XPU, "Relabel_", {
197
198
199
200
201
202
203
    ATEN_ID_TYPE_SWITCH(arrays[0]->dtype, IdType, {
      ret = impl::Relabel_<XPU, IdType>(arrays);
    });
  });
  return ret;
}

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
NDArray Concat(const std::vector<IdArray>& arrays) {
  IdArray ret;

  int64_t len = 0, offset = 0;
  for (size_t i = 0; i < arrays.size(); ++i) {
    len += arrays[i]->shape[0];
    CHECK_SAME_DTYPE(arrays[0], arrays[i]);
    CHECK_SAME_CONTEXT(arrays[0], arrays[i]);
  }

  NDArray ret_arr = NDArray::Empty({len},
                                   arrays[0]->dtype,
                                   arrays[0]->ctx);

  auto device = runtime::DeviceAPI::Get(arrays[0]->ctx);
  for (size_t i = 0; i < arrays.size(); ++i) {
    ATEN_DTYPE_SWITCH(arrays[i]->dtype, DType, "array", {
      device->CopyDataFromTo(
        static_cast<DType*>(arrays[i]->data),
        0,
        static_cast<DType*>(ret_arr->data),
        offset,
        arrays[i]->shape[0] * sizeof(DType),
        arrays[i]->ctx,
        ret_arr->ctx,
        arrays[i]->dtype,
        nullptr);

        offset += arrays[i]->shape[0] * sizeof(DType);
    });
  }

  return ret_arr;
}

239
240
241
template<typename ValueType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, ValueType pad_value) {
  std::tuple<NDArray, IdArray, IdArray> ret;
242
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Pack", {
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ret = impl::Pack<XPU, DType>(array, static_cast<DType>(pad_value));
    });
  });
  return ret;
}

template std::tuple<NDArray, IdArray, IdArray> Pack<int32_t>(NDArray, int32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<int64_t>(NDArray, int64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint32_t>(NDArray, uint32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint64_t>(NDArray, uint64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<float>(NDArray, float);
template std::tuple<NDArray, IdArray, IdArray> Pack<double>(NDArray, double);

std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths) {
  std::pair<NDArray, IdArray> ret;
259
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "ConcatSlices", {
260
261
262
263
264
265
266
267
268
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ATEN_ID_TYPE_SWITCH(lengths->dtype, IdType, {
        ret = impl::ConcatSlices<XPU, DType, IdType>(array, lengths);
      });
    });
  });
  return ret;
}

269
270
271
272
273
274
275
276
277
278
IdArray CumSum(IdArray array, bool prepend_zero) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "CumSum", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
      ret = impl::CumSum<XPU, IdType>(array, prepend_zero);
    });
  });
  return ret;
}

279
280
281
282
283
284
285
286
287
288
IdArray NonZero(NDArray array) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "NonZero", {
    ATEN_ID_TYPE_SWITCH(array->dtype, DType, {
      ret = impl::NonZero<XPU, DType>(array);
    });
  });
  return ret;
}

289
290
291
292
293
294
295
296
297
298
299
300
301
302
std::pair<IdArray, IdArray> Sort(IdArray array) {
  if (array.NumElements() == 0) {
    IdArray idx = NewIdArray(0, array->ctx, 64);
    return std::make_pair(array, idx);
  }
  std::pair<IdArray, IdArray> ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "Sort", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
      ret = impl::Sort<XPU, IdType>(array);
    });
  });
  return ret;
}

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
std::string ToDebugString(NDArray array) {
  std::ostringstream oss;
  NDArray a = array.CopyTo(DLContext{kDLCPU, 0});
  oss << "array([";
  ATEN_DTYPE_SWITCH(a->dtype, DType, "array", {
    for (int64_t i = 0; i < std::min<int64_t>(a.NumElements(), 10L); ++i) {
      oss << a.Ptr<DType>()[i] << ", ";
    }
  });
  if (a.NumElements() > 10)
    oss << "...";
  oss << "], dtype=" << array->dtype << ", ctx=" << array->ctx << ")";
  return oss.str();
}

318
319
320
///////////////////////// CSR routines //////////////////////////

bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
321
322
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
323
  bool ret = false;
324
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
325
326
327
328
329
330
331
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  NDArray ret;
332
333
334
335
336
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_DTYPE(csr.indices, col);
  CHECK_SAME_CONTEXT(csr.indices, row);
  CHECK_SAME_CONTEXT(csr.indices, col);
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
337
338
339
340
341
342
343
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

bool CSRHasDuplicate(CSRMatrix csr) {
  bool ret = false;
344
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRHasDuplicate", {
345
346
347
348
349
350
    ret = impl::CSRHasDuplicate<XPU, IdType>(csr);
  });
  return ret;
}

int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
351
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
352
  int64_t ret = 0;
353
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
354
355
356
357
358
359
360
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray row) {
  NDArray ret;
361
362
363
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_CONTEXT(csr.indices, row);
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
364
365
366
367
368
369
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
370
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
371
  NDArray ret;
372
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowColumnIndices", {
373
374
375
376
377
378
    ret = impl::CSRGetRowColumnIndices<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
379
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
380
  NDArray ret;
381
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowData", {
382
    ret = impl::CSRGetRowData<XPU, IdType>(csr, row);
383
384
385
386
  });
  return ret;
}

387
388
389
390
391
392
393
394
395
396
bool CSRIsSorted(CSRMatrix csr) {
  if (csr.indices->shape[0] <= 1)
    return true;
  bool ret = false;
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsSorted", {
    ret = impl::CSRIsSorted<XPU, IdType>(csr);
  });
  return ret;
}

397
398
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  NDArray ret;
399
400
401
402
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
403
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetData", {
404
    ret = impl::CSRGetData<XPU, IdType>(csr, rows, cols);
405
406
407
408
409
410
  });
  return ret;
}

std::vector<NDArray> CSRGetDataAndIndices(
    CSRMatrix csr, NDArray rows, NDArray cols) {
411
412
413
414
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
415
  std::vector<NDArray> ret;
416
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetDataAndIndices", {
417
    ret = impl::CSRGetDataAndIndices<XPU, IdType>(csr, rows, cols);
418
419
420
421
422
423
  });
  return ret;
}

CSRMatrix CSRTranspose(CSRMatrix csr) {
  CSRMatrix ret;
424
425
426
427
  ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRTranspose", {
    ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
      ret = impl::CSRTranspose<XPU, IdType>(csr);
    });
428
429
430
431
432
433
434
  });
  return ret;
}

COOMatrix CSRToCOO(CSRMatrix csr, bool data_as_order) {
  COOMatrix ret;
  if (data_as_order) {
435
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOODataAsOrder", {
436
437
438
439
440
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOODataAsOrder<XPU, IdType>(csr);
      });
    });
  } else {
441
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOO", {
442
443
444
445
446
447
448
449
450
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOO<XPU, IdType>(csr);
      });
    });
  }
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
451
452
453
  CHECK(start >= 0 && start < csr.num_rows) << "Invalid start index: " << start;
  CHECK(end >= 0 && end <= csr.num_rows) << "Invalid end index: " << end;
  CHECK_GE(end, start);
454
  CSRMatrix ret;
455
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
456
    ret = impl::CSRSliceRows<XPU, IdType>(csr, start, end);
457
458
459
460
461
  });
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
462
463
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, rows);
464
  CSRMatrix ret;
465
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
466
    ret = impl::CSRSliceRows<XPU, IdType>(csr, rows);
467
468
469
470
471
  });
  return ret;
}

CSRMatrix CSRSliceMatrix(CSRMatrix csr, NDArray rows, NDArray cols) {
472
473
474
475
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
476
  CSRMatrix ret;
477
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceMatrix", {
478
    ret = impl::CSRSliceMatrix<XPU, IdType>(csr, rows, cols);
479
480
481
482
  });
  return ret;
}

483
void CSRSort_(CSRMatrix* csr) {
484
485
486
  if (csr->sorted)
    return;
  ATEN_CSR_SWITCH_CUDA(*csr, XPU, IdType, "CSRSort_", {
487
    impl::CSRSort_<XPU, IdType>(csr);
Da Zheng's avatar
Da Zheng committed
488
489
490
  });
}

Da Zheng's avatar
Da Zheng committed
491
492
493
494
495
496
497
498
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  CSRMatrix ret;
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRReorder", {
    ret = impl::CSRReorder<XPU, IdType>(csr, new_row_ids, new_col_ids);
  });
  return ret;
}

499
500
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries) {
  CSRMatrix ret;
501
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRRemove", {
502
503
504
505
506
    ret = impl::CSRRemove<XPU, IdType>(csr, entries);
  });
  return ret;
}

507
508
509
COOMatrix CSRRowWiseSampling(
    CSRMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
510
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseSampling", {
511
    if (IsNullArray(prob)) {
512
513
514
515
516
517
518
519
520
521
522
523
      ret = impl::CSRRowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::CSRRowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
    }
  });
  return ret;
}

COOMatrix CSRRowWiseTopk(
524
    CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending) {
525
  COOMatrix ret;
526
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseTopk", {
527
528
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::CSRRowWiseTopk<XPU, IdType, DType>(
529
530
531
532
533
534
          mat, rows, k, weight, ascending);
    });
  });
  return ret;
}

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

CSRMatrix UnionCsr(const std::vector<CSRMatrix>& csrs) {
  CSRMatrix ret;
  CHECK_GT(csrs.size(), 1) << "UnionCsr creates a union of multiple CSRMatrixes";
  // sanity check
  for (size_t i = 1; i < csrs.size(); ++i) {
    CHECK_EQ(csrs[0].num_rows, csrs[i].num_rows) <<
      "UnionCsr requires both CSRMatrix have same number of rows";
    CHECK_EQ(csrs[0].num_cols, csrs[i].num_cols) <<
      "UnionCsr requires both CSRMatrix have same number of cols";
    CHECK_SAME_CONTEXT(csrs[0].indptr, csrs[i].indptr);
    CHECK_SAME_DTYPE(csrs[0].indptr, csrs[i].indptr);
  }

  ATEN_CSR_SWITCH(csrs[0], XPU, IdType, "UnionCsr", {
    ret = impl::UnionCsr<XPU, IdType>(csrs);
  });
  return ret;
}


556
557
558
559
560
561
562
563
564
565
566
std::tuple<CSRMatrix, IdArray, IdArray>
CSRToSimple(const CSRMatrix& csr) {
  std::tuple<CSRMatrix, IdArray, IdArray> ret;

  CSRMatrix sorted_csr = (CSRIsSorted(csr)) ? csr : CSRSort(csr);
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRToSimple", {
    ret = impl::CSRToSimple<XPU, IdType>(sorted_csr);
  });
  return ret;
}

567
568
///////////////////////// COO routines //////////////////////////

569
570
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  bool ret = false;
571
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
572
573
574
575
576
577
578
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  NDArray ret;
579
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
580
581
582
583
584
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

585
586
bool COOHasDuplicate(COOMatrix coo) {
  bool ret = false;
587
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOHasDuplicate", {
588
589
590
591
592
    ret = impl::COOHasDuplicate<XPU, IdType>(coo);
  });
  return ret;
}

593
594
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  int64_t ret = 0;
595
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
596
597
598
599
600
601
602
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

NDArray COOGetRowNNZ(COOMatrix coo, NDArray row) {
  NDArray ret;
603
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
604
605
606
607
608
609
610
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

std::pair<NDArray, NDArray> COOGetRowDataAndIndices(COOMatrix coo, int64_t row) {
  std::pair<NDArray, NDArray> ret;
611
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowDataAndIndices", {
612
    ret = impl::COOGetRowDataAndIndices<XPU, IdType>(coo, row);
613
614
615
616
617
618
619
  });
  return ret;
}

std::vector<NDArray> COOGetDataAndIndices(
    COOMatrix coo, NDArray rows, NDArray cols) {
  std::vector<NDArray> ret;
620
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetDataAndIndices", {
621
    ret = impl::COOGetDataAndIndices<XPU, IdType>(coo, rows, cols);
622
623
624
625
  });
  return ret;
}

626
627
628
629
630
631
632
633
NDArray COOGetData(COOMatrix coo, NDArray rows, NDArray cols) {
  NDArray ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetData", {
    ret = impl::COOGetData<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

634
COOMatrix COOTranspose(COOMatrix coo) {
635
  return COOMatrix(coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data);
636
637
}

638
639
CSRMatrix COOToCSR(COOMatrix coo) {
  CSRMatrix ret;
640
641
642
643
  ATEN_XPU_SWITCH_CUDA(coo.row->ctx.device_type, XPU, "COOToCSR", {
    ATEN_ID_TYPE_SWITCH(coo.row->dtype, IdType, {
      ret = impl::COOToCSR<XPU, IdType>(coo);
    });
644
645
646
647
  });
  return ret;
}

648
649
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
  COOMatrix ret;
650
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
651
    ret = impl::COOSliceRows<XPU, IdType>(coo, start, end);
652
653
654
655
656
657
  });
  return ret;
}

COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  COOMatrix ret;
658
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
659
    ret = impl::COOSliceRows<XPU, IdType>(coo, rows);
660
661
662
663
664
665
  });
  return ret;
}

COOMatrix COOSliceMatrix(COOMatrix coo, NDArray rows, NDArray cols) {
  COOMatrix ret;
666
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceMatrix", {
667
668
669
670
671
    ret = impl::COOSliceMatrix<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

672
673
674
675
676
677
void COOSort_(COOMatrix* mat, bool sort_column) {
  if ((mat->row_sorted && !sort_column) || mat->col_sorted)
    return;
  ATEN_XPU_SWITCH_CUDA(mat->row->ctx.device_type, XPU, "COOSort_", {
    ATEN_ID_TYPE_SWITCH(mat->row->dtype, IdType, {
      impl::COOSort_<XPU, IdType>(mat, sort_column);
678
    });
679
  });
680
681
682
683
684
685
686
687
688
}

std::pair<bool, bool> COOIsSorted(COOMatrix coo) {
  if (coo.row->shape[0] <= 1)
    return {true, true};
  std::pair<bool, bool> ret;
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOIsSorted", {
    ret = impl::COOIsSorted<XPU, IdType>(coo);
  });
689
690
691
  return ret;
}

692
693
694
695
696
697
698
699
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOReorder", {
    ret = impl::COOReorder<XPU, IdType>(coo, new_row_ids, new_col_ids);
  });
  return ret;
}

700
701
COOMatrix COORemove(COOMatrix coo, IdArray entries) {
  COOMatrix ret;
702
  ATEN_COO_SWITCH(coo, XPU, IdType, "COORemove", {
703
704
705
706
707
    ret = impl::COORemove<XPU, IdType>(coo, entries);
  });
  return ret;
}

708
709
710
COOMatrix COORowWiseSampling(
    COOMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
711
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseSampling", {
712
    if (IsNullArray(prob)) {
713
714
715
716
717
718
719
720
721
722
723
724
725
726
      ret = impl::COORowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::COORowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
    }
  });
  return ret;
}

COOMatrix COORowWiseTopk(
    COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending) {
  COOMatrix ret;
727
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseTopk", {
728
729
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::COORowWiseTopk<XPU, IdType, DType>(
730
731
          mat, rows, k, weight, ascending);
    });
732
733
734
735
  });
  return ret;
}

736
737
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo) {
  std::pair<COOMatrix, IdArray> ret;
738
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOCoalesce", {
739
740
741
742
743
    ret = impl::COOCoalesce<XPU, IdType>(coo);
  });
  return ret;
}

744
745
746
747
748
749
750
COOMatrix COOLineGraph(const COOMatrix &coo, bool backtracking) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOLineGraph", {
    ret = impl::COOLineGraph<XPU, IdType>(coo, backtracking);
  });
  return ret;
}
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

COOMatrix UnionCoo(const std::vector<COOMatrix>& coos) {
  COOMatrix ret;
  CHECK_GT(coos.size(), 1) << "UnionCoo creates a union of multiple COOMatrixes";
  // sanity check
  for (size_t i = 1; i < coos.size(); ++i) {
    CHECK_EQ(coos[0].num_rows, coos[i].num_rows) <<
      "UnionCoo requires both COOMatrix have same number of rows";
    CHECK_EQ(coos[0].num_cols, coos[i].num_cols) <<
      "UnionCoo requires both COOMatrix have same number of cols";
    CHECK_SAME_CONTEXT(coos[0].row, coos[i].row);
    CHECK_SAME_DTYPE(coos[0].row, coos[i].row);
  }

  // we assume the number of coos is not large in common cases
  std::vector<IdArray> coo_row;
  std::vector<IdArray> coo_col;
  bool has_data = false;

  for (size_t i = 0; i < coos.size(); ++i) {
    coo_row.push_back(coos[i].row);
    coo_col.push_back(coos[i].col);
    has_data |= COOHasData(coos[i]);
  }

  IdArray row = Concat(coo_row);
  IdArray col = Concat(coo_col);
  IdArray data = NullArray();

  if (has_data) {
    std::vector<IdArray> eid_data;
    eid_data.push_back(COOHasData(coos[0]) ?
                       coos[0].data :
                       Range(0,
                             coos[0].row->shape[0],
                             coos[0].row->dtype.bits,
                             coos[0].row->ctx));
    int64_t num_edges = coos[0].row->shape[0];
    for (size_t i = 1; i < coos.size(); ++i) {
      eid_data.push_back(COOHasData(coos[i]) ?
                         coos[i].data + num_edges :
                         Range(num_edges,
                               num_edges + coos[i].row->shape[0],
                               coos[i].row->dtype.bits,
                               coos[i].row->ctx));
      num_edges += coos[i].row->shape[0];
    }

    data = Concat(eid_data);
  }

  return COOMatrix(
    coos[0].num_rows,
    coos[0].num_cols,
    row,
    col,
    data,
    false,
    false);
}


813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
std::tuple<COOMatrix, IdArray, IdArray>
COOToSimple(const COOMatrix& coo) {
  // coo column sorted
  const COOMatrix sorted_coo = COOSort(coo, true);
  const IdArray eids_shuffled = COOHasData(sorted_coo) ?
    sorted_coo.data :
    Range(0, sorted_coo.row->shape[0], sorted_coo.row->dtype.bits, sorted_coo.row->ctx);
  const auto &coalesced_result = COOCoalesce(sorted_coo);
  const COOMatrix &coalesced_adj = coalesced_result.first;
  const IdArray &count = coalesced_result.second;

  /*
   * eids_shuffled actually already contains the mapping from old edge space to the
   * new one:
   *
   * * eids_shuffled[0:count[0]] indicates the original edge IDs that coalesced into new
   *   edge #0.
   * * eids_shuffled[count[0]:count[0] + count[1]] indicates those that coalesced into
   *   new edge #1.
   * * eids_shuffled[count[0] + count[1]:count[0] + count[1] + count[2]] indicates those
   *   that coalesced into new edge #2.
   * * etc.
   *
   * Here, we need to translate eids_shuffled to an array "eids_remapped" such that
   * eids_remapped[i] indicates the new edge ID the old edge #i is mapped to.  The
   * translation can simply be achieved by (in numpy code):
   *
   *     new_eid_for_eids_shuffled = np.range(len(count)).repeat(count)
   *     eids_remapped = np.zeros_like(new_eid_for_eids_shuffled)
   *     eids_remapped[eids_shuffled] = new_eid_for_eids_shuffled
   */
  const IdArray new_eids = Range(
    0, coalesced_adj.row->shape[0], coalesced_adj.row->dtype.bits, coalesced_adj.row->ctx);
  const IdArray eids_remapped = Scatter(Repeat(new_eids, count), eids_shuffled);

  COOMatrix ret = COOMatrix(
    coalesced_adj.num_rows,
    coalesced_adj.num_cols,
    coalesced_adj.row,
    coalesced_adj.col,
    NullArray(),
    true,
    true);
  return std::make_tuple(ret, count, eids_remapped);
}

859
///////////////////////// Graph Traverse routines //////////////////////////
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSNodesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSEdgesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSEdgesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr) {
  Frontiers ret;
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(csr.indptr->ctx.device_type, XPU, "TopologicalNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(csr.indices->dtype, IdType, {
      ret = impl::TopologicalNodesFrontiers<XPU, IdType>(csr);
    });
  });
  return ret;
}

Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSEdges<XPU, IdType>(csr, source);
    });
  });
  return ret;
}
919

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
                             IdArray source,
                             const bool has_reverse_edge,
                             const bool has_nontree_edge,
                             const bool return_labels) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSLabeledEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSLabeledEdges<XPU, IdType>(csr,
                                                  source,
                                                  has_reverse_edge,
                                                  has_nontree_edge,
                                                  return_labels);
    });
  });
  return ret;
}

944

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
///////////////////////// C APIs /////////////////////////
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFormat")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->format;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumRows")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_rows;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumCols")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_cols;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetIndices")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    const int64_t i = args[1];
    *rv = spmat->indices[i];
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFlags")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    List<Value> flags;
    for (bool flg : spmat->flags) {
      flags.push_back(Value(MakeValue(flg)));
    }
    *rv = flags;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLCreateSparseMatrix")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const int32_t format = args[0];
    const int64_t nrows = args[1];
    const int64_t ncols = args[2];
    const List<Value> indices = args[3];
    const List<Value> flags = args[4];
    std::shared_ptr<SparseMatrix> spmat(new SparseMatrix(
          format, nrows, ncols,
          ListValueToVector<IdArray>(indices),
          ListValueToVector<bool>(flags)));
    *rv = SparseMatrixRef(spmat);
  });

995
996
997
998
999
1000
1001
1002
1003
1004
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLExistSharedMemArray")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string name = args[0];
#ifndef _WIN32
    *rv = SharedMemory::Exist(name);
#else
    *rv = false;
#endif  // _WIN32
  });

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLArrayCastToSigned")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray array = args[0];
    CHECK_EQ(array->dtype.code, kDLUInt);
    std::vector<int64_t> shape(array->shape, array->shape + array->ndim);
    DLDataType dtype = array->dtype;
    dtype.code = kDLInt;
    *rv = array.CreateView(shape, dtype, 0);
  });

1015
1016
}  // namespace aten
}  // namespace dgl
1017
1018
1019
1020

std::ostream& operator << (std::ostream& os, dgl::runtime::NDArray array) {
  return os << dgl::aten::ToDebugString(array);
}