test_new_update_all_hetero.py 11.2 KB
Newer Older
1
2
3
4
5
6
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
7
from itertools import product
8
9
10
11
12
13
14
15
16
17
18
19
import backend as F
import networkx as nx
import unittest, pytest
from dgl import DGLError
import test_utils
from test_utils import parametrize_dtype, get_cases
from scipy.sparse import rand
rfuncs = {'sum': fn.sum, 'max': fn.max, 'min': fn.min, 'mean': fn.mean}
fill_value = {'sum': 0, 'max': float("-inf")}
feat_size = 2

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')
20
@unittest.skipIf(F._default_context_str == 'gpu', reason="Max/min reducer not supported on GPU yet.")
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

    g = dgl.heterograph({
        ('user', 'follows', 'user'):  ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 1, 1], [0, 0, 1]),
        ('developer', 'develops', 'game'): ([0, 1, 0], [0, 1, 1]),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def create_test_heterograph_2(idtype):

    src = np.random.randint(0, 5, 25)
    dst = np.random.randint(0, 5, 25)
    g = dgl.heterograph({
        ('user', 'becomes', 'player'):  (src, dst),
        ('user', 'follows', 'user'):  (src, dst),
        ('user', 'plays', 'game'): (src, dst),
        ('user', 'wishes', 'game'): (src, dst),
        ('developer', 'develops', 'game'): (src, dst),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

def create_test_heterograph_large(idtype):

    src = np.random.randint(0, 50, 2500)
    dst = np.random.randint(0, 50, 2500)
    g = dgl.heterograph({
        ('user', 'follows', 'user'):  (src, dst),
        ('user', 'plays', 'game'): (src, dst),
        ('user', 'wishes', 'game'): (src, dst),
        ('developer', 'develops', 'game'): (src, dst),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

70
71
72
@parametrize_dtype
def test_unary_copy_u(idtype):
    def _test(mfunc, rfunc):
73
74
75
76
        g = create_test_heterograph_2(idtype)
        g0 = create_test_heterograph(idtype)
        g1 = create_test_heterograph_large(idtype)
        cross_reducer = rfunc.__name__
77
78
79
80
81
82
83
84
85
86
87
88
89
        x1 = F.randn((g.num_nodes('user'), feat_size))
        x2 = F.randn((g.num_nodes('developer'), feat_size))
        F.attach_grad(x1)
        F.attach_grad(x2)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
                {etype : (mfunc('h', 'm'), rfunc('m', 'y'))
                    for etype in g.canonical_etypes},
                cross_reducer)
            r1 = g.nodes['game'].data['y'].clone()
            r2 = g.nodes['user'].data['y'].clone()
            r3 = g.nodes['player'].data['y'].clone()
            loss = r1.sum() + r2.sum() + r3.sum()
            F.backward(loss)
            n_grad1 = F.grad(g.nodes['user'].data['h']).clone()
            n_grad2 = F.grad(g.nodes['developer'].data['h']).clone()

        g.nodes['user'].data.clear()
        g.nodes['developer'].data.clear()
        g.nodes['game'].data.clear()
        g.nodes['player'].data.clear()
105
106
107
108
109

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

110
111
112
113
        F.attach_grad(x1)
        F.attach_grad(x2)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        with F.record_grad():
            g.update_all(mfunc('h', 'm'), rfunc('m', 'y'))
            r4 = g.nodes['game'].data['y']
            r5 = g.nodes['user'].data['y']
            r6 = g.nodes['player'].data['y']
            loss = r4.sum() + r5.sum() + r6.sum()
            F.backward(loss)
            n_grad3 = F.grad(g.nodes['user'].data['h'])
            n_grad4 = F.grad(g.nodes['developer'].data['h'])

        assert F.allclose(r1, r4)
        assert F.allclose(r2, r5)
        assert F.allclose(r3, r6)
        assert(F.allclose(n_grad1, n_grad3))
        assert(F.allclose(n_grad2, n_grad4))
130
    _test(fn.copy_u, fn.sum)
131
132
    _test(fn.copy_u, fn.max)
    _test(fn.copy_u, fn.min)
133
134
135
136
137
138
    # _test('copy_u', 'mean')

@parametrize_dtype
def test_unary_copy_e(idtype):
    def _test(mfunc, rfunc):

139
140
141
142
143
144
145
146
        g = create_test_heterograph_large(idtype)
        g0 = create_test_heterograph_2(idtype)
        g1 = create_test_heterograph(idtype)
        cross_reducer = rfunc.__name__
        x1 = F.randn((g.num_edges('plays'),feat_size))
        x2 = F.randn((g.num_edges('follows'),feat_size))
        x3 = F.randn((g.num_edges('develops'),feat_size))
        x4 = F.randn((g.num_edges('wishes'),feat_size))
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)
        g['plays'].edata['eid'] = x1
        g['follows'].edata['eid'] = x2
        g['develops'].edata['eid'] = x3
        g['wishes'].edata['eid'] = x4

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
                {'plays' : (mfunc('eid', 'm'), rfunc('m', 'y')),
                'follows': (mfunc('eid', 'm'), rfunc('m', 'y')),
                'develops': (mfunc('eid', 'm'), rfunc('m', 'y')),
                'wishes': (mfunc('eid', 'm'), rfunc('m', 'y'))},
166
167
168
169
170
171
172
173
174
175
176
                cross_reducer)
            r1 = g.nodes['game'].data['y'].clone()
            r2 = g.nodes['user'].data['y'].clone()
            loss = r1.sum() + r2.sum()
            F.backward(loss)
            e_grad1 = F.grad(g['develops'].edata['eid']).clone()
            e_grad2 = F.grad(g['plays'].edata['eid']).clone()
            e_grad3 = F.grad(g['wishes'].edata['eid']).clone()
            e_grad4 = F.grad(g['follows'].edata['eid']).clone()
        {etype : (g[etype].edata.clear())
            for _, etype, _ in g.canonical_etypes},
177
178
179
180
181
182

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

        # TODO(Israt): output type can be None in multi_update and empty
183
184
185
186
187
188
189
190
191
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)

        g['plays'].edata['eid'] = x1
        g['follows'].edata['eid'] = x2
        g['develops'].edata['eid'] = x3
        g['wishes'].edata['eid'] = x4
192

193
194
195
196
197
198
199
200
201
202
        with F.record_grad():
            g.update_all(mfunc('eid', 'm'), rfunc('m', 'y'))
            r3 = g.nodes['game'].data['y']
            r4 = g.nodes['user'].data['y']
            loss = r3.sum() + r4.sum()
            F.backward(loss)
            e_grad5 = F.grad(g['develops'].edata['eid'])
            e_grad6 = F.grad(g['plays'].edata['eid'])
            e_grad7 = F.grad(g['wishes'].edata['eid'])
            e_grad8 = F.grad(g['follows'].edata['eid'])
203
204
205
206
207
208
        # # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                   print('@{} {} v.s. {}'.format(i, x, y))

209
210
211
212
213
214
        assert F.allclose(r1, r3)
        assert F.allclose(r2, r4)
        assert(F.allclose(e_grad1, e_grad5))
        assert(F.allclose(e_grad2, e_grad6))
        assert(F.allclose(e_grad3, e_grad7))
        assert(F.allclose(e_grad4, e_grad8))
215
    _test(fn.copy_e, fn.sum)
216
217
    _test(fn.copy_e, fn.max)
    _test(fn.copy_e, fn.min)
218
219
    # _test('copy_e', 'mean')

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
@parametrize_dtype
def test_binary_op(idtype):
    def _test(lhs, rhs, binary_op, reducer):

        g = create_test_heterograph(idtype)

        x1 = F.randn((g.num_nodes('user'), feat_size))
        x2 = F.randn((g.num_nodes('developer'), feat_size))
        x3 = F.randn((g.num_nodes('game'), feat_size))

        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2
        g.nodes['game'].data['h'] = x3

        x1 = F.randn((4,feat_size))
        x2 = F.randn((4,feat_size))
        x3 = F.randn((3,feat_size))
        x4 = F.randn((3,feat_size))
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)
        g['plays'].edata['h'] = x1
        g['follows'].edata['h'] = x2
        g['develops'].edata['h'] = x3
        g['wishes'].edata['h'] = x4

        builtin_msg_name = "{}_{}_{}".format(lhs, binary_op, rhs)
        builtin_msg = getattr(fn, builtin_msg_name)
        builtin_red = getattr(fn, reducer)

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
                {etype : (builtin_msg('h', 'h', 'm'), builtin_red('m', 'y'))
                    for etype in g.canonical_etypes},
                'sum')
            r1 = g.nodes['game'].data['y']
            F.backward(r1, F.ones(r1.shape))
            n_grad1 = F.grad(r1)

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

        g.update_all(builtin_msg('h', 'h', 'm'), builtin_red('m', 'y'))
        r2 = g.nodes['game'].data['y']
        F.backward(r2, F.ones(r2.shape))
        n_grad2 = F.grad(r2)
        # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                    print('@{} {} v.s. {}'.format(i, x, y))

        if not F.allclose(r1, r2):
            _print_error(r1, r2)
        assert F.allclose(r1, r2)
        # TODO (Israt): r1 and r2 have different frad func associated with
        # if not F.allclose(n_grad1, n_grad2):
        #     print('node grad')
        #     _print_error(n_grad1, n_grad2)
        # assert(F.allclose(n_grad1, n_grad2))

    target = ["u", "v", "e"]
    for lhs, rhs in product(target, target):
        if lhs == rhs:
            continue
        for binary_op in ["add", "sub", "mul", "div"]:
            # TODO(Israt) :Add support for reduce func "max", "min", "mean"
            for reducer in ["sum"]:
                print(lhs, rhs, binary_op, reducer)
                _test(lhs, rhs, binary_op, reducer)


301
302
303
if __name__ == '__main__':
    test_unary_copy_u()
    test_unary_copy_e()
304
    test_binary_op()
305