line.py 12.6 KB
Newer Older
1
2
3
import torch
import argparse
import dgl
4
import dgl.multiprocessing as mp
5
6
7
8
9
10
11
12
from torch.utils.data import DataLoader
import os
import random
import time
import numpy as np

from reading_data import LineDataset
from model import SkipGramModel
13
from utils import sum_up_params, check_args
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

class LineTrainer:
    def __init__(self, args):
        """ Initializing the trainer with the input arguments """
        self.args = args
        self.dataset = LineDataset(
            net_file=args.data_file,
            batch_size=args.batch_size,
            negative=args.negative,
            gpus=args.gpus,
            fast_neg=args.fast_neg,
            ogbl_name=args.ogbl_name,
            load_from_ogbl=args.load_from_ogbl,
            ogbn_name=args.ogbn_name,
            load_from_ogbn=args.load_from_ogbn,
            num_samples=args.num_samples * 1000000,
            )
        self.emb_size = self.dataset.G.number_of_nodes()
        self.emb_model = None

    def init_device_emb(self):
        """ set the device before training 
        will be called once in fast_train_mp / fast_train
        """
        choices = sum([self.args.only_gpu, self.args.only_cpu, self.args.mix])
        assert choices == 1, "Must choose only *one* training mode in [only_cpu, only_gpu, mix]"
        
        # initializing embedding on CPU
        self.emb_model = SkipGramModel(
            emb_size=self.emb_size, 
            emb_dimension=self.args.dim,
            batch_size=self.args.batch_size,
            only_cpu=self.args.only_cpu,
            only_gpu=self.args.only_gpu,
            only_fst=self.args.only_fst,
            only_snd=self.args.only_snd,
            mix=self.args.mix,
            neg_weight=self.args.neg_weight,
            negative=self.args.negative,
            lr=self.args.lr,
            lap_norm=self.args.lap_norm,
            fast_neg=self.args.fast_neg,
            record_loss=self.args.print_loss,
            async_update=self.args.async_update,
            num_threads=self.args.num_threads,
            )
        
        torch.set_num_threads(self.args.num_threads)
        if self.args.only_gpu:
            print("Run in 1 GPU")
            assert self.args.gpus[0] >= 0
            self.emb_model.all_to_device(self.args.gpus[0])
        elif self.args.mix:
            print("Mix CPU with %d GPU" % len(self.args.gpus))
            if len(self.args.gpus) == 1:
                assert self.args.gpus[0] >= 0, 'mix CPU with GPU should have avaliable GPU'
                self.emb_model.set_device(self.args.gpus[0])
        else:
            print("Run in CPU process")
            
    def train(self):
        """ train the embedding """
        if len(self.args.gpus) > 1:
            self.fast_train_mp()
        else:
            self.fast_train()

    def fast_train_mp(self):
        """ multi-cpu-core or mix cpu & multi-gpu """
        self.init_device_emb()
        self.emb_model.share_memory()

        sum_up_params(self.emb_model)

        start_all = time.time()
        ps = []

        for i in range(len(self.args.gpus)):
            p = mp.Process(target=self.fast_train_sp, args=(i, self.args.gpus[i]))
            ps.append(p)
            p.start()

        for p in ps:
            p.join()
        
        print("Used time: %.2fs" % (time.time()-start_all))
        if self.args.save_in_pt:
            self.emb_model.save_embedding_pt(self.dataset, self.args.output_emb_file)
        else:
            self.emb_model.save_embedding(self.dataset, self.args.output_emb_file)

    def fast_train_sp(self, rank, gpu_id):
        """ a subprocess for fast_train_mp """
        if self.args.mix:
            self.emb_model.set_device(gpu_id)
        
        torch.set_num_threads(self.args.num_threads)
        if self.args.async_update:
            self.emb_model.create_async_update()

        sampler = self.dataset.create_sampler(rank)

        dataloader = DataLoader(
            dataset=sampler.seeds,
            batch_size=self.args.batch_size,
            collate_fn=sampler.sample,
            shuffle=False,
            drop_last=False,
            num_workers=self.args.num_sampler_threads,
            )
        num_batches = len(dataloader)
        print("num batchs: %d in process [%d] GPU [%d]" % (num_batches, rank, gpu_id))

        start = time.time()
        with torch.no_grad():
            for i, edges in enumerate(dataloader):
                if self.args.fast_neg:
                    self.emb_model.fast_learn(edges)
                else:
                    # do negative sampling
                    bs = edges.size()[0]
                    neg_nodes = torch.LongTensor(
                        np.random.choice(self.dataset.neg_table, 
                            bs * self.args.negative, 
                            replace=True))
                    self.emb_model.fast_learn(edges, neg_nodes=neg_nodes)

                if i > 0 and i % self.args.print_interval == 0:
                    if self.args.print_loss:
                        if self.args.only_fst:
                            print("GPU-[%d] batch %d time: %.2fs fst-loss: %.4f" \
                                % (gpu_id, i, time.time()-start, -sum(self.emb_model.loss_fst)/self.args.print_interval))
                        elif self.args.only_snd:
                            print("GPU-[%d] batch %d time: %.2fs snd-loss: %.4f" \
                                % (gpu_id, i, time.time()-start, -sum(self.emb_model.loss_snd)/self.args.print_interval))
                        else:
                            print("GPU-[%d] batch %d time: %.2fs fst-loss: %.4f snd-loss: %.4f" \
                                % (gpu_id, i, time.time()-start, \
                                -sum(self.emb_model.loss_fst)/self.args.print_interval, \
                                -sum(self.emb_model.loss_snd)/self.args.print_interval))
                        self.emb_model.loss_fst = []
                        self.emb_model.loss_snd = []
                    else:
                        print("GPU-[%d] batch %d time: %.2fs" % (gpu_id, i, time.time()-start))
                    start = time.time()

            if self.args.async_update:
                self.emb_model.finish_async_update()

    def fast_train(self):
        """ fast train with dataloader with only gpu / only cpu"""
        self.init_device_emb()

        if self.args.async_update:
            self.emb_model.share_memory()
            self.emb_model.create_async_update()

        sum_up_params(self.emb_model)

        sampler = self.dataset.create_sampler(0)

        dataloader = DataLoader(
            dataset=sampler.seeds,
            batch_size=self.args.batch_size,
            collate_fn=sampler.sample,
            shuffle=False,
            drop_last=False,
            num_workers=self.args.num_sampler_threads,
            )
        
        num_batches = len(dataloader)
        print("num batchs: %d\n" % num_batches)

        start_all = time.time()
        start = time.time()
        with torch.no_grad():
            for i, edges in enumerate(dataloader):
                if self.args.fast_neg:
                    self.emb_model.fast_learn(edges)
                else:
                    # do negative sampling
                    bs = edges.size()[0]
                    neg_nodes = torch.LongTensor(
                        np.random.choice(self.dataset.neg_table, 
                            bs * self.args.negative, 
                            replace=True))
                    self.emb_model.fast_learn(edges, neg_nodes=neg_nodes)

                if i > 0 and i % self.args.print_interval == 0:
                    if self.args.print_loss:
                        if self.args.only_fst:
                            print("Batch %d time: %.2fs fst-loss: %.4f" \
                                % (i, time.time()-start, -sum(self.emb_model.loss_fst)/self.args.print_interval))
                        elif self.args.only_snd:
                            print("Batch %d time: %.2fs snd-loss: %.4f" \
                                % (i, time.time()-start, -sum(self.emb_model.loss_snd)/self.args.print_interval))
                        else:
                            print("Batch %d time: %.2fs fst-loss: %.4f snd-loss: %.4f" \
                                % (i, time.time()-start, \
                                -sum(self.emb_model.loss_fst)/self.args.print_interval, \
                                -sum(self.emb_model.loss_snd)/self.args.print_interval))
                        self.emb_model.loss_fst = []
                        self.emb_model.loss_snd = []
                    else:
                        print("Batch %d, training time: %.2fs" % (i, time.time()-start))
                    start = time.time()

            if self.args.async_update:
                self.emb_model.finish_async_update()

        print("Training used time: %.2fs" % (time.time()-start_all))
        if self.args.save_in_pt:
            self.emb_model.save_embedding_pt(self.dataset, self.args.output_emb_file)
        else:
            self.emb_model.save_embedding(self.dataset, self.args.output_emb_file)

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Implementation of LINE.")
    # input files
    ## personal datasets
    parser.add_argument('--data_file', type=str, 
            help="path of dgl graphs") 
    ## ogbl datasets
    parser.add_argument('--ogbl_name', type=str, 
            help="name of ogbl dataset, e.g. ogbl-ddi")
    parser.add_argument('--load_from_ogbl', default=False, action="store_true",
            help="whether load dataset from ogbl")
    parser.add_argument('--ogbn_name', type=str, 
            help="name of ogbn dataset, e.g. ogbn-proteins")
    parser.add_argument('--load_from_ogbn', default=False, action="store_true",
            help="whether load dataset from ogbn")

    # output files
    parser.add_argument('--save_in_pt', default=False, action="store_true",
            help='Whether save dat in pt format or npy')
    parser.add_argument('--output_emb_file', type=str, default="emb.npy",
            help='path of the output npy embedding file')

    # model parameters
    parser.add_argument('--dim', default=128, type=int, 
            help="embedding dimensions")
    parser.add_argument('--num_samples', default=1, type=int, 
            help="number of samples during training (million)")
    parser.add_argument('--negative', default=1, type=int, 
            help="negative samples for each positve node pair")
    parser.add_argument('--batch_size', default=128, type=int, 
            help="number of edges in each batch")
    parser.add_argument('--neg_weight', default=1., type=float, 
            help="negative weight")
    parser.add_argument('--lap_norm', default=0.01, type=float, 
            help="weight of laplacian normalization")
    
    # training parameters
    parser.add_argument('--only_fst', default=False, action="store_true", 
            help="only do first-order proximity embedding")
    parser.add_argument('--only_snd', default=False, action="store_true", 
            help="only do second-order proximity embedding")
    parser.add_argument('--print_interval', default=100, type=int, 
            help="number of batches between printing")
    parser.add_argument('--print_loss', default=False, action="store_true", 
            help="whether print loss during training")
    parser.add_argument('--lr', default=0.2, type=float, 
            help="learning rate")
    
    # optimization settings
    parser.add_argument('--mix', default=False, action="store_true", 
            help="mixed training with CPU and GPU")
    parser.add_argument('--gpus', type=int, default=[-1], nargs='+', 
            help='a list of active gpu ids, e.g. 0, used with --mix')
    parser.add_argument('--only_cpu', default=False, action="store_true", 
            help="training with CPU")
    parser.add_argument('--only_gpu', default=False, action="store_true", 
            help="training with a single GPU (all of the parameters are moved on the GPU)")
    parser.add_argument('--async_update', default=False, action="store_true", 
            help="mixed training asynchronously, recommend not to use this")

    parser.add_argument('--fast_neg', default=False, action="store_true", 
            help="do negative sampling inside a batch")
    parser.add_argument('--num_threads', default=2, type=int, 
            help="number of threads used for each CPU-core/GPU")
    parser.add_argument('--num_sampler_threads', default=2, type=int, 
            help="number of threads used for sampling")

    args = parser.parse_args()

    if args.async_update:
        assert args.mix, "--async_update only with --mix"

    start_time = time.time()
    trainer = LineTrainer(args)
    trainer.train()
    print("Total used time: %.2f" % (time.time() - start_time))