2_node_classification.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
"""
Single Machine Multi-GPU Minibatch Node Classification
======================================================

In this tutorial, you will learn how to use multiple GPUs in training a
graph neural network (GNN) for node classification.

This tutorial assumes that you have read the `Stochastic GNN Training for Node
Classification in DGL <../../notebooks/stochastic_training/node_classification.ipynb>`__.
It also assumes that you know the basics of training general
models with multi-GPU with ``DistributedDataParallel``.

.. note::

   See `this tutorial <https://pytorch.org/tutorials/intermediate/ddp_tutorial.html>`__
   from PyTorch for general multi-GPU training with ``DistributedDataParallel``.  Also,
   see the first section of :doc:`the multi-GPU graph classification
   tutorial <1_graph_classification>`
   for an overview of using ``DistributedDataParallel`` with DGL.

"""


######################################################################
# Importing Packages
# ---------------
#
# We use ``torch.distributed`` to initialize a distributed training context
# and ``torch.multiprocessing`` to spawn multiple processes for each GPU.
#

import os

os.environ["DGLBACKEND"] = "pytorch"
import time

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
import tqdm
from torch.distributed.algorithms.join import Join
from torch.nn.parallel import DistributedDataParallel as DDP


######################################################################
# Defining Model
# --------------
#
# The model will be again identical to `Stochastic GNN Training for Node
# Classification in DGL <../../notebooks/stochastic_training/node_classification.ipynb>`__.
#


class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
        self.set_layer_dtype(torch.float32)

    def set_layer_dtype(self, dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x


######################################################################
# Mini-batch Data Loading
# -----------------------
#
# The major difference from the previous tutorial is that we will use
# ``DistributedItemSampler`` instead of ``ItemSampler`` to sample mini-batches
# of nodes.  ``DistributedItemSampler`` is a distributed version of
# ``ItemSampler`` that works with ``DistributedDataParallel``.  It is
# implemented as a wrapper around ``ItemSampler`` and will sample the same
# minibatch on all replicas.  It also supports dropping the last non-full
# minibatch to avoid the need for padding.
#


def create_dataloader(
    args,
    graph,
    features,
    itemset,
    device,
    drop_last=False,
    shuffle=True,
    drop_uneven_inputs=False,
):
    datapipe = gb.DistributedItemSampler(
        item_set=itemset,
        batch_size=args.batch_size,
        drop_last=drop_last,
        shuffle=shuffle,
        drop_uneven_inputs=drop_uneven_inputs,
    )
    datapipe = datapipe.sample_neighbor(graph, args.fanout)
    datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
    datapipe = datapipe.to_dgl()
    datapipe = datapipe.copy_to(device)
    dataloader = gb.MultiProcessDataLoader(
        datapipe, num_workers=args.num_workers
    )
    return dataloader


######################################################################
# Evaluation Loop
# ---------------
#
# The evaluation loop is almost identical to the previous tutorial.
#


@torch.no_grad()
def evaluate(rank, args, model, graph, features, itemset, num_classes, device):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
        args,
        graph,
        features,
        itemset,
        drop_last=False,
        shuffle=False,
        drop_uneven_inputs=False,
        device=device,
    )

    for step, data in (
        tqdm.tqdm(enumerate(dataloader)) if rank == 0 else enumerate(dataloader)
    ):
        blocks = data.blocks
        x = data.node_features["feat"]
        y.append(data.labels)
        y_hats.append(model.module(blocks, x))

    res = MF.accuracy(
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )

    return res.to(device)


######################################################################
# Training Loop
# -------------
#
# The training loop is also almost identical to the previous tutorial except
# that we use Join Context Manager to solve the uneven input problem. The
# mechanics of Distributed Data Parallel (DDP) training in PyTorch requires
# the number of inputs are the same for all ranks, otherwise the program may
# error or hang. To solve it, PyTorch provides Join Context Manager. Please
# refer to `this tutorial <https://pytorch.org/tutorials/advanced/generic_join.html>`__
# for detailed information.
#


def train(
    world_size,
    rank,
    args,
    graph,
    features,
    train_set,
    valid_set,
    num_classes,
    model,
    device,
):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    # Create training data loader.
    dataloader = create_dataloader(
        args,
        graph,
        features,
        train_set,
        device,
        drop_last=False,
        shuffle=True,
        drop_uneven_inputs=False,
    )

    for epoch in range(args.epochs):
        epoch_start = time.time()

        model.train()
        total_loss = torch.tensor(0, dtype=torch.float).to(device)
        with Join([model]):
            for step, data in (
                tqdm.tqdm(enumerate(dataloader))
                if rank == 0
                else enumerate(dataloader)
            ):
                # The input features are from the source nodes in the first
                # layer's computation graph.
                x = data.node_features["feat"]

                # The ground truth labels are from the destination nodes
                # in the last layer's computation graph.
                y = data.labels

                blocks = data.blocks

                y_hat = model(blocks, x)

                # Compute loss.
                loss = F.cross_entropy(y_hat, y)

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                total_loss += loss

        # Evaluate the model.
        if rank == 0:
            print("Validating...")
        acc = (
            evaluate(
                rank,
                args,
                model,
                graph,
                features,
                valid_set,
                num_classes,
                device,
            )
            / world_size
        )
        ########################################################################
        # (HIGHLIGHT) Collect accuracy and loss values from sub-processes and
        # obtain overall average values.
        #
        # `torch.distributed.reduce` is used to reduce tensors from all the
        # sub-processes to a specified process, ReduceOp.SUM is used by default.
        ########################################################################
        dist.reduce(tensor=acc, dst=0)
        total_loss /= step + 1
        dist.reduce(tensor=total_loss, dst=0)
        dist.barrier()

        epoch_end = time.time()
        if rank == 0:
            print(
                f"Epoch {epoch:05d} | "
                f"Average Loss {total_loss.item() / world_size:.4f} | "
                f"Accuracy {acc.item():.4f} | "
                f"Time {epoch_end - epoch_start:.4f}"
            )


######################################################################
# Defining Traning and Evaluation Procedures
# ------------------------------------------
#
# The following code defines the main function for each process. It is
# similar to the previous tutorial except that we need to initialize a
# distributed training context with ``torch.distributed`` and wrap the model
# with ``torch.nn.parallel.DistributedDataParallel``.
#


def run(rank, world_size, args, devices, dataset):
    # Set up multiprocessing environment.
    device = devices[rank]
    torch.cuda.set_device(device)
    dist.init_process_group(
        backend="nccl",  # Use NCCL backend for distributed GPU training
        init_method="tcp://127.0.0.1:12345",
        world_size=world_size,
        rank=rank,
    )

    graph = dataset.graph
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
    args.fanout = list(map(int, args.fanout.split(",")))
    num_classes = dataset.tasks[0].metadata["num_classes"]

    in_size = features.size("node", None, "feat")[0]
    hidden_size = 256
    out_size = num_classes

    # Create GraphSAGE model. It should be copied onto a GPU as a replica.
    model = SAGE(in_size, hidden_size, out_size).to(device)
    model = DDP(model)

    # Model training.
    if rank == 0:
        print("Training...")
    train(
        world_size,
        rank,
        args,
        graph,
        features,
        train_set,
        valid_set,
        num_classes,
        model,
        device,
    )

    # Test the model.
    if rank == 0:
        print("Testing...")
    test_set = dataset.tasks[0].test_set
    test_acc = (
        evaluate(
            rank,
            args,
            model,
            graph,
            features,
            itemset=test_set,
            num_classes=num_classes,
            device=device,
        )
        / world_size
    )
    dist.reduce(tensor=test_acc, dst=0)
    dist.barrier()
    if rank == 0:
        print(f"Test Accuracy {test_acc.item():.4f}")


######################################################################
# Spawning Trainer Processes
# --------------------------
#
# The following code spawns a process for each GPU and calls the ``run``
# function defined above.
#


if __name__ == "__main__":
    if not torch.cuda.is_available():
        print("No GPU found!")
        exit(0)

    args = {
        "epochs": 5,
        "lr": 0.01,
        "batch_size": 1024,
        "fanout": "10,10,10",
        "num_workers": 0,
    }

    devices = torch.arange(torch.cuda.device_count())
    world_size = len(devices)

    print(f"Training with {world_size} gpus.")

    # Load and preprocess dataset.
    dataset = gb.BuiltinDataset("ogbn-arxiv").load()

    # Thread limiting to avoid resource competition.
    os.environ["OMP_NUM_THREADS"] = str(mp.cpu_count() // 2 // world_size)

    mp.set_sharing_strategy("file_system")
    mp.spawn(
        run,
        args=(world_size, args, devices, dataset),
        nprocs=world_size,
        join=True,
    )