model.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import random
import numpy as np

def init_emb2pos_index(walk_length, window_size, batch_size):
    ''' select embedding of positive nodes from a batch of node embeddings
    
    Return
    ------
    index_emb_posu torch.LongTensor : the indices of u_embeddings
    index_emb_posv torch.LongTensor : the indices of v_embeddings

    Usage
    -----
    # emb_u.shape: [batch_size * walk_length, dim]
    batch_emb2posu = torch.index_select(emb_u, 0, index_emb_posu)
    '''
    idx_list_u = []
    idx_list_v = []
    for b in range(batch_size):
        for i in range(walk_length):
            for j in range(i-window_size, i):
                if j >= 0:
                    idx_list_u.append(j + b * walk_length)
                    idx_list_v.append(i + b * walk_length)
            for j in range(i + 1, i + 1 + window_size):
                if j < walk_length:
                    idx_list_u.append(j + b * walk_length)
                    idx_list_v.append(i + b * walk_length)

    # [num_pos * batch_size]
    index_emb_posu = torch.LongTensor(idx_list_u)
    index_emb_posv = torch.LongTensor(idx_list_v)

    return index_emb_posu, index_emb_posv

def init_emb2neg_index(walk_length, window_size, negative, batch_size):
    '''select embedding of negative nodes from a batch of node embeddings 
    for fast negative sampling
    
    Return
    ------
    index_emb_negu torch.LongTensor : the indices of u_embeddings
    index_emb_negv torch.LongTensor : the indices of v_embeddings

    Usage
    -----
    # emb_u.shape: [batch_size * walk_length, dim]
    batch_emb2negu = torch.index_select(emb_u, 0, index_emb_negu)
    '''
    idx_list_u = []
    for b in range(batch_size):
        for i in range(walk_length):
            for j in range(i-window_size, i):
                if j >= 0:
                    idx_list_u += [i + b * walk_length] * negative
            for j in range(i+1, i+1+window_size):
                if j < walk_length:
                    idx_list_u += [i + b * walk_length] * negative
    
    idx_list_v = list(range(batch_size * walk_length))\
        * negative * window_size * 2
    random.shuffle(idx_list_v)
    idx_list_v = idx_list_v[:len(idx_list_u)]

    # [bs * walk_length * negative]
    index_emb_negu = torch.LongTensor(idx_list_u)
    index_emb_negv = torch.LongTensor(idx_list_v)

    return index_emb_negu, index_emb_negv

def init_grad_avg(walk_length, window_size, batch_size):
76
    ''' averaging graidents by specific weights
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    '''
    grad_avg = []
    for b in range(batch_size):
        for i in range(walk_length):
            if i < window_size:
                grad_avg.append(1. / float(i+window_size))
            elif i >= walk_length - window_size:
                grad_avg.append(1. / float(walk_length - i - 1 + window_size))
            else:
                grad_avg.append(0.5 / window_size)

    # [num_pos * batch_size]
    return torch.Tensor(grad_avg).unsqueeze(1)

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def init_weight(walk_length, window_size, batch_size):
    ''' select nodes' gradients from gradient matrix
    '''
    weight = []
    for b in range(batch_size):
        for i in range(walk_length):
            for j in range(i-window_size, i):
                if j >= 0:
                    weight.append(1. - float(i - j - 1)/float(window_size))
            for j in range(i + 1, i + 1 + window_size):
                if j < walk_length:
                    weight.append(1. - float(j - i - 1)/float(window_size))

    # [num_pos * batch_size]
    return torch.Tensor(weight).unsqueeze(1)

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
def init_empty_grad(emb_dimension, walk_length, batch_size):
    """ initialize gradient matrix """
    grad_u = torch.zeros((batch_size * walk_length, emb_dimension))
    grad_v = torch.zeros((batch_size * walk_length, emb_dimension))

    return grad_u, grad_v

def adam(grad, state_sum, nodes, lr, device, only_gpu):
    """ calculate gradients according to adam """
    grad_sum = (grad * grad).mean(1)
    if not only_gpu:
        grad_sum = grad_sum.cpu()
    state_sum.index_add_(0, nodes, grad_sum) # cpu
    std = state_sum[nodes].to(device)  # gpu
    std_values = std.sqrt_().add_(1e-10).unsqueeze(1)
    grad = (lr * grad / std_values) # gpu

    return grad

class SkipGramModel(nn.Module):
    """ Negative sampling based skip-gram """
    def __init__(self, 
        emb_size, 
        emb_dimension,
        walk_length,
        window_size,
        batch_size,
        only_cpu,
        only_gpu,
        mix,
        neg_weight,
        negative,
        lr,
        lap_norm,
        adam,
        sgd,
        avg_sgd,
        fast_neg,
        record_loss,
146
147
        norm,
        use_context_weight,
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        ):
        """ initialize embedding on CPU 

        Paremeters
        ----------
        emb_size int : number of nodes
        emb_dimension int : embedding dimension
        walk_length int : number of nodes in a sequence
        window_size int : context window size
        batch_size int : number of node sequences in each batch
        only_cpu bool : training with CPU
        only_gpu bool : training with GPU
        mix bool : mixed training with CPU and GPU
        negative int : negative samples for each positve node pair
        neg_weight float : negative weight
        lr float : initial learning rate
        lap_norm float : weight of laplacian normalization
        adam bool : use adam for embedding updation
        sgd bool : use sgd for embedding updation
        avg_sgd bool : average gradients of sgd for embedding updation
        fast_neg bool : do negative sampling inside a batch
        """
        super(SkipGramModel, self).__init__()
        self.emb_size = emb_size
        self.emb_dimension = emb_dimension
        self.walk_length = walk_length
        self.window_size = window_size
        self.batch_size = batch_size
        self.only_cpu = only_cpu
        self.only_gpu = only_gpu
        self.mixed_train = mix
        self.neg_weight = neg_weight
        self.negative = negative
        self.lr = lr
        self.lap_norm = lap_norm
        self.adam = adam
        self.sgd = sgd
        self.avg_sgd = avg_sgd
        self.fast_neg = fast_neg
        self.record_loss = record_loss
188
189
        self.norm = norm
        self.use_context_weight = use_context_weight
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        
        # initialize the device as cpu
        self.device = torch.device("cpu")

        # content embedding
        self.u_embeddings = nn.Embedding(
            self.emb_size, self.emb_dimension, sparse=True)
        # context embedding
        self.v_embeddings = nn.Embedding(
            self.emb_size, self.emb_dimension, sparse=True)
        # initialze embedding
        initrange = 1.0 / self.emb_dimension
        init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
        init.constant_(self.v_embeddings.weight.data, 0)

        # lookup_table is used for fast sigmoid computing
        self.lookup_table = torch.sigmoid(torch.arange(-6.01, 6.01, 0.01))
        self.lookup_table[0] = 0.
        self.lookup_table[-1] = 1.
        if self.record_loss:
            self.logsigmoid_table = torch.log(torch.sigmoid(torch.arange(-6.01, 6.01, 0.01)))
            self.loss = []

        # indexes to select positive/negative node pairs from batch_walks
        self.index_emb_posu, self.index_emb_posv = init_emb2pos_index(
            self.walk_length,
            self.window_size,
            self.batch_size)
        if self.fast_neg:
            self.index_emb_negu, self.index_emb_negv = init_emb2neg_index(
                self.walk_length,
                self.window_size,
                self.negative,
                self.batch_size)

225
226
227
228
229
230
        if self.use_context_weight:
            self.context_weight = init_weight(
                self.walk_length,
                self.window_size,
                self.batch_size)

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        # coefficients for averaging the gradients
        if self.avg_sgd:
            self.grad_avg = init_grad_avg(
                self.walk_length,
                self.window_size,
                self.batch_size)
        # adam
        if self.adam:
            self.state_sum_u = torch.zeros(self.emb_size)
            self.state_sum_v = torch.zeros(self.emb_size)

        # gradients of nodes in batch_walks
        self.grad_u, self.grad_v = init_empty_grad(
            self.emb_dimension,
            self.walk_length,
            self.batch_size)

    def share_memory(self):
        """ share the parameters across subprocesses """
        self.u_embeddings.weight.share_memory_()
        self.v_embeddings.weight.share_memory_()
        if self.adam:
            self.state_sum_u.share_memory_()
            self.state_sum_v.share_memory_()

    def set_device(self, gpu_id):
        """ set gpu device """
        self.device = torch.device("cuda:%d" % gpu_id)
        print("The device is", self.device)
        self.lookup_table = self.lookup_table.to(self.device)
        if self.record_loss:
            self.logsigmoid_table = self.logsigmoid_table.to(self.device)
        self.index_emb_posu = self.index_emb_posu.to(self.device)
        self.index_emb_posv = self.index_emb_posv.to(self.device)
        if self.fast_neg:
            self.index_emb_negu = self.index_emb_negu.to(self.device)
            self.index_emb_negv = self.index_emb_negv.to(self.device)
        self.grad_u = self.grad_u.to(self.device)
        self.grad_v = self.grad_v.to(self.device)
        if self.avg_sgd:
            self.grad_avg = self.grad_avg.to(self.device)
272
273
        if self.use_context_weight:
            self.context_weight = self.context_weight.to(self.device)
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

    def all_to_device(self, gpu_id):
        """ move all of the parameters to a single GPU """
        self.device = torch.device("cuda:%d" % gpu_id)
        self.set_device(gpu_id)
        self.u_embeddings = self.u_embeddings.cuda(gpu_id)
        self.v_embeddings = self.v_embeddings.cuda(gpu_id)
        if self.adam:
            self.state_sum_u = self.state_sum_u.to(self.device)
            self.state_sum_v = self.state_sum_v.to(self.device)

    def fast_sigmoid(self, score):
        """ do fast sigmoid by looking up in a pre-defined table """
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.lookup_table[idx]

    def fast_logsigmoid(self, score):
        """ do fast logsigmoid by looking up in a pre-defined table """
        idx = torch.floor((score + 6.01) / 0.01).long()
        return self.logsigmoid_table[idx]

    def fast_learn(self, batch_walks, lr, neg_nodes=None):
        """ Learn a batch of random walks in a fast way. It has the following features:
            1. It calculating the gradients directly without the forward operation.
            2. It does sigmoid by a looking up table.

        Specifically, for each positive/negative node pair (i,j), the updating procedure is as following:
            score = self.fast_sigmoid(u_embedding[i].dot(v_embedding[j]))
            # label = 1 for positive samples; label = 0 for negative samples.
            u_embedding[i] += (label - score) * v_embedding[j]
            v_embedding[i] += (label - score) * u_embedding[j]

        Parameters
        ----------
        batch_walks list : a list of node sequnces
        lr float : current learning rate
        neg_nodes torch.LongTensor : a long tensor of sampled true negative nodes. If neg_nodes is None,
            then do negative sampling randomly from the nodes in batch_walks as an alternative.

        Usage example
        -------------
        batch_walks = [torch.LongTensor([1,2,3,4]), 
                       torch.LongTensor([2,3,4,2])])
        lr = 0.01
        neg_nodes = None
        """
        if self.adam:
            lr = self.lr

        # [batch_size, walk_length]
        if isinstance(batch_walks, list):
            nodes = torch.stack(batch_walks)
        elif isinstance(batch_walks, torch.LongTensor):
            nodes = batch_walks
        if self.only_gpu:
            nodes = nodes.to(self.device)
            if neg_nodes is not None:
                neg_nodes = neg_nodes.to(self.device)
        emb_u = self.u_embeddings(nodes).view(-1, self.emb_dimension).to(self.device)
        emb_v = self.v_embeddings(nodes).view(-1, self.emb_dimension).to(self.device)

        ## Postive
        bs = len(batch_walks)
        if bs < self.batch_size:
            index_emb_posu, index_emb_posv = init_emb2pos_index(
                self.walk_length, 
                self.window_size, 
                bs)
            index_emb_posu = index_emb_posu.to(self.device)
            index_emb_posv = index_emb_posv.to(self.device)
        else:
            index_emb_posu = self.index_emb_posu
            index_emb_posv = self.index_emb_posv

        # num_pos: the number of positive node pairs generated by a single walk sequence
        # [batch_size * num_pos, dim]
        emb_pos_u = torch.index_select(emb_u, 0, index_emb_posu)
        emb_pos_v = torch.index_select(emb_v, 0, index_emb_posv)

        pos_score = torch.sum(torch.mul(emb_pos_u, emb_pos_v), dim=1)
        pos_score = torch.clamp(pos_score, max=6, min=-6)
        # [batch_size * num_pos, 1]
        score = (1 - self.fast_sigmoid(pos_score)).unsqueeze(1)
        if self.record_loss:
            self.loss.append(torch.mean(self.fast_logsigmoid(pos_score)).item())

        # [batch_size * num_pos, dim]
        if self.lap_norm > 0:
            grad_u_pos = score * emb_pos_v + self.lap_norm * (emb_pos_v - emb_pos_u)
            grad_v_pos = score * emb_pos_u + self.lap_norm * (emb_pos_u - emb_pos_v)
        else:
            grad_u_pos = score * emb_pos_v
            grad_v_pos = score * emb_pos_u
367
368
369
370
371
372
373
374
375
376
377
378

        if self.use_context_weight:
            if bs < self.batch_size:
                context_weight = init_weight(
                    self.walk_length,
                    self.window_size,
                    bs).to(self.device)
            else:
                context_weight = self.context_weight
            grad_u_pos *= context_weight
            grad_v_pos *= context_weight

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        # [batch_size * walk_length, dim]
        if bs < self.batch_size:
            grad_u, grad_v = init_empty_grad(
                self.emb_dimension, 
                self.walk_length, 
                bs)
            grad_u = grad_u.to(self.device)
            grad_v = grad_v.to(self.device)
        else:
            self.grad_u = self.grad_u.to(self.device)
            self.grad_u.zero_()
            self.grad_v = self.grad_v.to(self.device)
            self.grad_v.zero_()
            grad_u = self.grad_u
            grad_v = self.grad_v
        grad_u.index_add_(0, index_emb_posu, grad_u_pos)
        grad_v.index_add_(0, index_emb_posv, grad_v_pos)

        ## Negative
        if bs < self.batch_size:
            index_emb_negu, index_emb_negv = init_emb2neg_index(
                self.walk_length, self.window_size, self.negative, bs)
            index_emb_negu = index_emb_negu.to(self.device)
            index_emb_negv = index_emb_negv.to(self.device)
        else:
            index_emb_negu = self.index_emb_negu
            index_emb_negv = self.index_emb_negv
        emb_neg_u = torch.index_select(emb_u, 0, index_emb_negu)
        
        if neg_nodes is None:
            emb_neg_v = torch.index_select(emb_v, 0, index_emb_negv)
        else:
            emb_neg_v = self.v_embeddings.weight[neg_nodes].to(self.device)

        # [batch_size * walk_length * negative, dim]
        neg_score = torch.sum(torch.mul(emb_neg_u, emb_neg_v), dim=1)
        neg_score = torch.clamp(neg_score, max=6, min=-6)
        # [batch_size * walk_length * negative, 1]
        score = - self.fast_sigmoid(neg_score).unsqueeze(1)
        if self.record_loss:
            self.loss.append(self.negative * self.neg_weight * torch.mean(self.fast_logsigmoid(-neg_score)).item())

        grad_u_neg = self.neg_weight * score * emb_neg_v
        grad_v_neg = self.neg_weight * score * emb_neg_u

        grad_u.index_add_(0, index_emb_negu, grad_u_neg)
        if neg_nodes is None:
            grad_v.index_add_(0, index_emb_negv, grad_v_neg)

        ## Update
        nodes = nodes.view(-1)
        if self.avg_sgd:
            # since the times that a node are performed backward propagation are different, 
            # we need to average the gradients by different weight.
            # e.g. for sequence [1, 2, 3, ...] with window_size = 5, we have positive node 
            # pairs [(1,2), (1, 3), (1,4), ...]. To average the gradients for each node, we
            # perform weighting on the gradients of node pairs. 
            # The weights are: [1/5, 1/5, ..., 1/6, ..., 1/10, ..., 1/6, ..., 1/5].
            if bs < self.batch_size:
                grad_avg = init_grad_avg(
                    self.walk_length,
                    self.window_size,
                    bs).to(self.device)
            else:
                grad_avg = self.grad_avg
            grad_u = grad_avg * grad_u * lr
            grad_v = grad_avg * grad_v * lr
        elif self.sgd:
            grad_u = grad_u * lr
            grad_v = grad_v * lr
        elif self.adam:
            # use adam optimizer
            grad_u = adam(grad_u, self.state_sum_u, nodes, lr, self.device, self.only_gpu)
            grad_v = adam(grad_v, self.state_sum_v, nodes, lr, self.device, self.only_gpu)

        if self.mixed_train:
            grad_u = grad_u.cpu()
            grad_v = grad_v.cpu()
            if neg_nodes is not None:
                grad_v_neg = grad_v_neg.cpu()
        
        self.u_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_u)
        self.v_embeddings.weight.data.index_add_(0, nodes.view(-1), grad_v)            
        if neg_nodes is not None:
            self.v_embeddings.weight.data.index_add_(0, neg_nodes.view(-1), lr * grad_v_neg)
        return

    def forward(self, pos_u, pos_v, neg_v):
        ''' Do forward and backward. It is designed for future use. '''
        emb_u = self.u_embeddings(pos_u)
        emb_v = self.v_embeddings(pos_v)
        emb_neg_v = self.v_embeddings(neg_v)

        score = torch.sum(torch.mul(emb_u, emb_v), dim=1)
        score = torch.clamp(score, max=6, min=-6)
        score = -F.logsigmoid(score)

        neg_score = torch.bmm(emb_neg_v, emb_u.unsqueeze(2)).squeeze()
        neg_score = torch.clamp(neg_score, max=6, min=-6)
        neg_score = -torch.sum(F.logsigmoid(-neg_score), dim=1)

        #return torch.mean(score + neg_score)
        return torch.sum(score), torch.sum(neg_score)

    def save_embedding(self, dataset, file_name):
484
        """ Write embedding to local file. Only used when node ids are numbers.
485
486
487
488
489
490
491

        Parameter
        ---------
        dataset DeepwalkDataset : the dataset
        file_name str : the file name
        """
        embedding = self.u_embeddings.weight.cpu().data.numpy()
492
493
        if self.norm:
            embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(-1, 1)
494
495
496
        np.save(file_name, embedding)

    def save_embedding_pt(self, dataset, file_name):
497
        """ For ogb leaderboard.
498
        """
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        try:
            max_node_id = max(dataset.node2id.keys())
            if max_node_id + 1 != self.emb_size:
                print("WARNING: The node ids are not serial.")

            embedding = torch.zeros(max_node_id + 1, self.emb_dimension)
            index = torch.LongTensor(list(map(lambda id: dataset.id2node[id], list(range(self.emb_size)))))
            embedding.index_add_(0, index, self.u_embeddings.weight.cpu().data)

            if self.norm:
                embedding /= torch.sqrt(torch.sum(embedding.mul(embedding), 1) + 1e-6).unsqueeze(1)
            torch.save(embedding, file_name)
        except:
            self.save_embedding_pt_dgl_graph(dataset, file_name)

    def save_embedding_pt_dgl_graph(self, dataset, file_name):
        """ For ogb leaderboard.
        """
        embedding = torch.zeros_like(self.u_embeddings.weight.cpu().data)
        valid_seeds = torch.LongTensor(dataset.valid_seeds)
        valid_embedding = self.u_embeddings.weight.cpu().data.index_select(0, 
            valid_seeds)
        embedding.index_add_(0, valid_seeds, self.u_embeddings.weight.cpu().data)
522

523
        if self.norm:
524
525
            embedding /= torch.sqrt(torch.sum(embedding.mul(embedding), 1) + 1e-6).unsqueeze(1)

526
527
528
529
530
531
532
533
534
535
536
        torch.save(embedding, file_name)

    def save_embedding_txt(self, dataset, file_name):
        """ Write embedding to local file. For future use.

        Parameter
        ---------
        dataset DeepwalkDataset : the dataset
        file_name str : the file name
        """
        embedding = self.u_embeddings.weight.cpu().data.numpy()
537
538
        if self.norm:
            embedding /= np.sqrt(np.sum(embedding * embedding, 1)).reshape(-1, 1)
539
540
541
542
543
        with open(file_name, 'w') as f:
            f.write('%d %d\n' % (self.emb_size, self.emb_dimension))
            for wid in range(self.emb_size):
                e = ' '.join(map(lambda x: str(x), embedding[wid]))
                f.write('%s %s\n' % (str(dataset.id2node[wid]), e))